首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain mitochondria were found to convert 3-mercaptopyruvate to 2-mercaptoacetate in the presence of NAD+, coenzyme A and thiamin pyrophosphate. The overall reaction probably consists of an oxidative decarboxylation of 3-mercaptopyruvate with 2-mercaptoacetyl CoA as a product which is then hydrolyzed to 2-mercaptoacetate by acyl CoA hydrolase.  相似文献   

2.
The enzyme mercaptopyruvate sulfurtransferase appears to play an important role in the in vivo detoxification of cyanide. It does so by transferring sulfur to cyanide to produce thiocyanate, which is less toxic and may be excreted through the kidney. Several compounds were tested for their ability to affect the rate of enzyme catalyzed thiocyanate formation in vitro. The studies were carried out using both a partially purified bovine kidney extract and a highly purified enzyme preparation. Hypotaurine and methanesulfinic acid doubled sulfurtransferase activity in the partially purified extract at 30 mM, but inhibited the purified enzyme to 57% (hypotaurine) and 27% (methanesulfinic acid) of control activity at the same concentration. Pyruvate, phenylpyruvate, oxobutyrate, and oxoglutarate each inhibited the extract and purified forms of mercaptopyruvate sulfurtransferase. Phenylpyruvate was the most effective inhibitor, reducing activity to 0.2% of control values in the extract, and 11% of control values for purified MPST when added to the reaction at 30 mM. Other compounds tested (see Table 1) had a negligible effect on sulfurtransferase activity. A heat stable cofactor was found in boiled kidney extract which stimulated sulfurtransferase activity in the extract but inhibited sulfurtransferase activity in the purified enzyme, as was observed for hypotaurine and methanesulfinate. The boiled extract had no thiocyanate forming activity of its own. The cofactor operated in synergy with methanesulfinate, but independently of hypotaurine.  相似文献   

3.
Mammalian 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2), purified to apparent homogeneity by a new procedure, was studied by steady-state kinetic methods. The enzyme-catalyzed transfer of a sulfur atom from 3-mercaptopyruvate either to 2-mercaptoethanol or to a second molecule of 3-mercaptopyruvate was found to proceed by a sequential formal mechanism. An overall mechanism incorporating both of these transfers was shown to be capable of generating all of the initial velocity and product inhibition behavior observed.  相似文献   

4.
5.
Summary We have studied the transamination pathway (3-mercaptopyruvate pathway) ofl-cysteine metabolism in rats. Characterization of cysteine aminotransferase (EC 2.6.1.3) from liver indicated that the transamination, the first reaction of this pathway, was catalyzed by aspartate aminotransferase (EC 2.6.1.1). 3-Mercaptopyruvate, the product of the transamination, may be metabolized through two routes. The initial reactions of these routes are reduction and transsulfuration, and the final metabolites are 3-mercaptolactate-cysteine mixed disulfide [S-(2-hydroxy-2-carboxyethylthio)cysteine, HCETC] and inorganic sulfate, respectively. The study using anti-lactate dehydrogenase antiserum proved that the enzyme catalyzing the reduction of 3-mercaptopyruvate was lactate dehydrogenase (EC 1.1.1.27). Formation of HCETC was shown to depend on low 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity. Results were discussed in relation to HCETC excretion in normal human subjects and patients with 3-mercaptolactate-cysteine disulfiduria. Incubation of liver mitochondria withl-cysteine, 2-oxoglutarate and glutathione resulted in the formation of sulfate and thiosulfate, indicating that thiosulfate was formed by transsulfuration of 3-mercaptopyruvate and finally metabolized to sulfate.  相似文献   

6.
3-Mercaptopyruvate sulfurtransferase catalyzes the transfer of sulfur from 3-mercaptopyruvate to several possible acceptor molecules, one of which is cyanide. Because the transsulfuration of cyanide is the primary in vivo mechanism of detoxification, 3-mercaptopyruvate sulfurtransferase may function in the enzymatic detoxification of cyanide in vivo. Three α-keto acids (α-ketobutyrate, α-ketoglutarate, and pyruvate) have previously been demonstrated to be cyanide antidotes in vivo, and it has been suggested that this is due to the nonenzymatic binding of cyanide by the α-keto acid. However, it has also been proposed that α-keto acids may increase the activity of enzymes involved in the transsulfuration of cyanide. Thus, the effect of these three α-keto acids on the enzyme 3-mercaptopyruvate sulfurtransferase was examined. All three α-keto acids inhibited 3-mercaptopyruvate sulfurtransferase in a concentration-dependent manner and were determined to be uncompetitive inhibitors of MST with respect to 3-mercaptopyruvate. The inhibitor constant Ki was estimated by two methods for each inhibitor and ranged from 4.3 to 6.3 mM. The I50, which is the inhibitor concentration that produces 50% inhibition, was calculated for all three α-keto acids and ranged between 9.5 and 13.7 mM. These observations add further support to the hypothesis that the mechanisms of the α-keto acid antidotes is the nonenzymatic binding of cyanide, not stimulation of enzymes involved in the transsulfuration of cyanide to thiocyanate. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Summary We have studied the 3-mercaptopyruvate pathway (transamination pathway) ofl-cysteine metabolism in rat liver mitochondria.l-Cysteine and other substrates at 10 mM concentration were incubated with mitochondrial fraction at pH 8.4, and sulfate and thiosulfate were determined by ion chromatography. Whenl-cysteine alone was incubated, sulfate formed was 0.7µmol per mitochondria from one g of liver per 60 min. Addition of 2-oxoglutarate and GSH resulted in more than 3-fold increase in sulfate formation, and thiosulfate was formed besides sulfate. The sum (A + 2B) of sulfate (A) and thiosulfate (B) formed was approximately 7-times that withl-cysteine alone. Incubation with 3-mercaptopyruvate resulted in sulfate and thiosulfate formation, and sulfate was formed with thiosulfate. These reactions were stimulated with glutathione. Sulfate formation froml-cysteinesulfinate and 2-oxoglutarate was not enhanced by glutathione and thiosulfate was not formed. These findings indicate thatl-cysteine was metabolized and sulfate was formed through 3-mercaptopyruvate pathway in mitochondria.  相似文献   

8.
An ion chromatographic method for the simultaneous determination of cyanide and thiocyanate in blood has been developed. After extraction by adding water and methanol to blood, cyanide was derivatized with 2,3-naphthalenedialdehyde and taurine to give a fluorescent product of 1-cyanobenz[f]isoindole. This compound was detected with high sensitivity by fluorometry and the underivatized thiocyanate was detected by ultraviolet absorption. The detection limits were 3.8 pmol ml−1 for cyanide and 86 pmol ml−1 for thiocyanate, and the recoveries from blood were ca. 83% and ca. 100%, respectively. The proposed method was successfully applied to the analysis of both anions in blood from smokers, non-smokers and fire victims.  相似文献   

9.
10.
11.
The pI value of rat erythrocyte 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) was determined to be 5.9 at 10 degrees C by isoelectric focusing in a horizontal slab polyacrylamide gel containing 2% carrier ampholyte (pH 3-10). In this study, ribonuclease A-glutathione mixed disulfides (RNase-SG's) (T. Ubuka et al. (1986) J. Chromatogr., 363, 431-437) were used as pI standards. A mixture of RNase-SG was prepared by reducing bovine pancreatic ribonuclease A (RNase) with dithiothreitol and then treating the reduced RNase with oxidized glutathione. The mixture was composed of eight species which contained 1 (RNase-SG1) to 8 (RNase-SG8) mol of glutathione per mole of RNase, and the pI values of these species were determined under conditions minimizing the effect of carbon dioxide. The newly determined pI values of RNase-SG1 through RNase-SG8 were 8.8, 8.2, 7.7, 7.3, 6.9, 6.4, 5.8, and 5.3, respectively. The average change in pI values of these disulfides was 0.50 pH unit per mole of the bound glutathione per mole of RNase. The RNase-SG mixture was stable in acidic solutions and could be stored at 4 degrees C as well as at -20 degrees C with little change for at least 1 year. Thus, the mixture is shown to be an excellent standard for the determination of pI values of proteins by isoelectric focusing in the wide range of pI value.  相似文献   

12.
Activities of cyanide metabolizing enzymes were measured in various subcellular fractions and regions in the central nervous system. Brain rhodanese and liver beta-mercaptopyruvate sulfurtransferase showed a slight decrease in activity after death. The activity of beta-mercaptopyruvate sulfurtransferase was negligible in the rat brain, compared with that of rhodanese. A small amount of thiocyanate was produced from cyanide and beta-mercaptopyruvate in the human brain, probably due to contamination with red blood cells. Rhodanese activity was widely distributed in all the areas of nervous tissue examined. In the rat the olfactory bulb showed the highest rhodanese activity, and high activity was also observed served in the thalamus, septum, hippocampus, and dorsal part of the midbrain. Rhodanese activity was low in various parts of the cerebral cortex. The distribution pattern of rhodanese in post-mortem human brain was essentially similar to that in rat brain. The thalamus, amygdala, centrum semiovale, colliculus superior, and cerebellar cortex showed high rhodanese activity in the human brain. Rhodanese activity was detected in the spinal cord. Anterior horn showed the highest rhodanese activity in the cervical, thoracic, and lumbar cord. Most rhodanese activity in the rat brain was recovered in the mitochondrial fraction with the highest specific activity. Rhodanese activity was lower in spinal cords obtained from autopsied cases with amyotrophic lateral sclerosis than in those of control subjects. A significant decrease in rhodanese was observed in the posterior column of the cervical or thoracic cord, but the activity in the anterior horn did not differ significantly between the two groups.  相似文献   

13.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

14.
Pseudomonas aeruginosa, the rRNA group I type species of genus Pseudomonas, is a Gram-negative, aerobic bacterium responsible for serious infection in humans. P. aeruginosa pathogenicity has been associated with the production of several virulence factors, including cyanide. Here, the biochemical characterization of recombinant P. aeruginosa rhodanese (Pa RhdA), catalyzing the sulfur transfer from thiosulfate to a thiophilic acceptor, e.g., cyanide, is reported. Sequence homology analysis of Pa RhdA predicts the sulfur-transfer reaction to occur through persulfuration of the conserved catalytic Cys230 residue. Accordingly, the titration of active Pa RhdA with cyanide indicates the presence of one extra sulfur bound to the Cys230 Sgamma atom per active enzyme molecule. Values of K(m) for thiosulfate binding to Pa RhdA are 1.0 and 7.4mM at pH 7.3 and 8.6, respectively, and 25 degrees C. However, the value of K(m) for cyanide binding to Pa RhdA (=14 mM, at 25 degrees C) and the value of V(max) (=750 micromol min(-1)mg(-1), at 25 degrees C) for the Pa RhdA-catalyzed sulfur-transfer reaction are essentially pH- and substrate-independent. Therefore, the thiosulfate-dependent Pa RhdA persulfuration is favored at pH 7.3 (i.e., the cytosolic pH of the bacterial cell) rather than pH 8.6 (i.e., the standard pH for rhodanese activity assay). Within this pH range, conformational change(s) occur at the Pa RhdA active site during the catalytic cycle. As a whole, rhodanese may participate in multiple detoxification mechanisms protecting P. aeruginosa from endogenous and environmental cyanide.  相似文献   

15.
NMDA receptor is involved in synaptic plasticity, learning, memory and neurological diseases like epilepsia and it is the major mediator of excitotoxicity. NR2B-containing NMDA receptors may be playing a crucial role in epileptic disorders. In the present study the effect of the convulsant drug 3-mercaptopropionic acid (MP) repetitive administration (4–7 days) on the hippocampal NR2B subunit was studied. A significant decrease in NR2B in the whole hippocampus was observed after MP4 with a tendency to recover to normal values in MP7 by western blot assay. Immunohistochemical studies showed a decrease in several CA1 and CA2/3 strata (21–73%). MP7 showed a reversion of the drop observed at 4 days in stratum oriens, pyramidal cell layer in CA1, CA2/3 and CA1 stratum radiatum. A significant fall in the lacunosum molecular layer of both areas and stratum radiatum of CA2/3 was observed. The immunostaining in MP4 showed a decrease in the granulare layer from dentate gyrus (20%), in hillus (71%) and subicullum (63%) as compared with control and these decreases were similar at MP7 values. Results showed decreases in NR2B subunit expression in different areas following repeated MP-induce seizures, suggesting that NR2B expression is altered depending on the diverse hippocampal input and output signals of each region that could be differently involved in modulating MP-induced hyperactivity.  相似文献   

16.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

17.
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a) was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity.  相似文献   

18.
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3′-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2′ and 3′ carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn2+ supporting about 10 times faster unwinding than Mg2+. Unlike Mg2+, Mn2+ does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.  相似文献   

19.
Murcia M  Jirouskova M  Li J  Coller BS  Filizola M 《Proteins》2008,71(4):1779-1791
A combination of experimental and computational approaches was used to provide a structural context for the role of the beta3 integrin subunit ligand-associated metal binding site (LIMBS) in the binding of physiological ligands to beta3 integrins. Specifically, we have carried out (1) adhesion assays on cells expressing normal alphaIIbeta3, normal alphaVbeta3, or the corresponding beta3 D217A LIMBS mutants; and (2) equilibrium and nonequilibrium (steered) molecular dynamics (MD) simulations of eptifibatide in complex with either a fully hydrated normal alphaIIbeta3 integrin fragment (alphaIIb beta-propeller and the beta3 betaA (I-like), hybrid, and PSI domains) or the equivalent beta3 D217A mutant. Normal alphaIIbeta3 expressing cells adhered to immobilized fibrinogen and echistatin, whereas cells expressing the alphaIIbeta3 D217A LIMBS mutant failed to adhere to either ligand. Similarly, the equivalent alphaVbeta3 mutant was unable to support adhesion to vitronectin or fibrinogen. The alphaIIbeta3 D217A mutation increased the binding of mAb AP5, which recognizes a ligand-induced binding site (LIBS) in the beta3 PSI domain, indicating that this mutation induced allosteric changes in the protein. Steered MD simulating the unbinding of eptifibatide from either normal alphaIIbeta3 or the equivalent beta3 D217A mutant suggested that the reduction in ligand binding caused by the LIMBS mutant required the loss of both the LIMBS and the metal ion-dependent adhesion site (MIDAS) metal ions. Our computational results indicate that the LIMBS plays a crucial role in ligand binding to alphaIIbeta3 by virtue of its effects on the coordination of the MIDAS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号