首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Previously, we have shown that IGF-1, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and aurintricarboxylic acid (ATA) protected MCF-7 cells against death induced by the protein synthesis inhibitor cycloheximide (CHX). We proposed that phosphorylation of a putative cellular protein(s) may be involved in this survival mechanism. In the present study we investigated the ability of several agents to induce phosphorylation of cellular proteins and correlated this ability to their survival effect. We found that TPA, ATA, and IGF-1 increased the degree of phosphorylation of a 27-kDa protein in a dose- and time-dependent manner in CHX-treated MCF-7 cells. The ED50 values observed were 25 ng/ml, 40 μg/ml and 15 ng/ml for TPA, ATA, and IGF-1, respectively. The effect was measured upon 10 min of cell treatment with each agent; it reached maximum at 60 min and thereafter decreased continuously to control levels. The 27-kDa protein was found in the cytosolic fraction as a phosphorylated serine residue. Further characterization with two-dimensional electrophoresis indicated that the 27-kDa phosphoprotein was resolved into two isoforms with pI 5.7 and 5.9. Such characteristics were observed for the small molecular weight heat shock protein HSP27. Indeed, a single band of 27 kDa was detected immunologically with rabbit polyclonal anti-human HSP27. The inactive phorbol ester αTPA, epidermal growth factor (EGF), and 8-bromoadenosine 3′5′-cyclic monophosphate (Br-cAMP) did not increase phosphorylation of the 27-kDa protein. Cell survival was measured by exposure of the CHX-pretreated cells to increasing concentrations of the various agents for 60 min, followed by a further incubation for 48 h in the presence of CHX only. TPA, ATA, and IGF-1 were found to enhance cell survival, whereas αTPA, EGF, and Br-cAMP did not. Our results indicate a correlation between phosphorylation of a 27-kDa protein, probably HSP27, and enhanced cell survival, suggesting a role for this phosphoprotein in the survival mechanism.  相似文献   

2.
Summary Prolonged exposure of cells to the potent protein synthesis inhibitor cycloheximide (CHX) terminates in cell death. In the present study we investigated the effect of epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin on cell death induced by CHX in the human cancerous cell lines MDA-231 and MCF-7 (breast), KB (oral epidermoid), HEP-2 (larynx epidermoid), and SW-480 (colon), and correlated this effect to the inhibition rate of protein synthesis. Cell death was evaluated by measuring either dead cells by trypan blue dye exclusion test or by the release of lactic dehydrogenase into the culture medium. CHX was shown to induce cell death in a concentration (1 to 60 μg/ml) and time (24 to 72 h)-dependent manner in each of the five cell lines. EGF at physiologic concentrations (2 to 40 ng/ml) reduced cell death close to control level (without CHX) in the cell lines HEP-2, KB, MDA-231, and SW-480, but had almost no effect on cell death in the MCF-7 cells. IGF-1 at physiologic concentrations (2 to 40 ng/ml) reduced cell death nearly to control level in the MCF-7 cells, but had only a partial effect in the other four cell lines. Insulin at supraphysiologic concentration (10 000 ng/ml) mimicked the effect of IGF-1 in each of the cell lines. CHX at concentrations that induced about 60% cell death, inhibited about 90% of protein synthesis as measured by [3H]leucine incorporation. Protein synthesis remained inhibited although cell viability was preserved by EGF or IGF-1. These results indicated that the mechanism by which EGF or IGF-1 preserve cell viability does not require new protein synthesis and may be mediated via a posttranslational modification effect.  相似文献   

3.
Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), and insulin protect density-inhibited murine Balb/c-3T3 fibroblasts against death by distinctive mechanisms. Determination of the cell survival-enhancing activity of growth factors by cell enumeration and neutral red uptake measurement gives equivalent results. PDGF displays a steep dose-response relationship in the 1-5 ng/ml range. The other factors display shallow log-linear relationships in the following ranges: EGF: 0.2-5 ng/ml; IGF-1: 2-80 ng/ml; and insulin: 57-4,500 ng/ml. Agonists that lead to the activation of protein kinase A, including forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate (Br-cAMP) and N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), markedly increase both short-term (5-h) and long-term (20-h) survival of cells. 2-Isobutyl-1-methylxanthine (IBMX) markedly enhances short-term survival, but its effect decays with time. The protein kinase C agonist 12-O-tetradecanoyl phorbol-13-acetate (TPA) has a moderate protective effect at concentrations of 16-32 nM, and 64 nM TPA is highly effective. The synthetic diaclglycerols 1,2-dioctanoylglycerol (DiC8) and 1-oleoyl-2-acetylglycerol (OAG) and the calcium ionophore ionomycin show low activity. Supplementation of EGF with a protein kinase A or C agonist results in a varying additive increase in short-term (5-h) cell survival and supplementation of EGF + insulin or PDGF + EGF + insulin increases further the already high level of protection given by the growth factor combinations. Combining a protein kinase A and a protein kinase C agonist in the absence of growth factors gives an approximately additive increase in cell survival. Results obtained with kinase, RNA, and protein synthesis inhibitors suggest that: 1) activated protein kinase C catalyzes one or more phosphorylation events in quiescent Balb/c-3T3 cells that lead to gene expression with the protein product(s) mediating protection of quiescent cells against death, and 2) phosphorylation events catalyzed by protein kinase A largely serve to protect cells by a mechanism not requiring de novo RNA and protein biosynthesis.  相似文献   

4.
5.
To study the role of IGF-I receptor signaling on cell cycle events we utilized MCF-7 breast cancer cells. IGF-I at physiological concentrations increased the level of p21CIP/WAF mRNA after 4has well as protein after 8hby 10- and 6-fold, respectively, in MCF-7 cells. This IGF-1 effect was reduced by 50% in MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression, demonstrating that IGF-1 receptor activation was involved in this process. Preincubation with the ERK1/2 inhibitor U0126 significantly reduced the IGF-1 effect on the amount of p21CIP/WAF protein in MCF-7 cells. These results were confirmed by the expression of a dominant negative construct for MEK-1 suggesting that the increase of the abundance of p21CIP/WAF in response to IGF-1 occurs via the ERK1/2 mitogen-activated protein kinase pathway. Using an antisense strategy, we demonstrated that abolition of p21CIP/WAF expression decreased by 2-fold the IGF-1 effect on cell proliferation in MCF-7. This latter result is explained by a delay in G1 to S cell cycle progression due partly to a reduction in the activation of some components of cell cycle including the induction of cyclin D1 expression in response to IGF-1. MCF-7 cells transiently overexpressing p21 showed increased basal and IGF-I-induced thymidine incorporation. Taken together, these results define p21CIP/WAF as a positive regulator in the cell proliferation induced by IGF-1 in MCF-7 cells.  相似文献   

6.
Contribution of the protein kinase A (PKA) and protein kinase C (PKC) signalling pathways to the regulation of 11beta-hydroxysteroid dehydrogenase type II (HSD11B2) gene expression was investigated in human breast cancer cell line MCF-7. Treatment of the cells with an adenylyl cyclase activator, forskolin, known to stimulate the PKA pathway, resulted in an increase in HSD11B2 mRNA content. Semi-quantitative RT-PCR revealed attenuation of the effect of forskolin by phorbol ester, tetradecanoyl phorbol acetate (TPA), an activator of the PKC pathway. It was also demonstrated that specific inhibitors significantly reduced the effect of activators of the two pathways. Stimulation of the PKA pathway did not affect, whereas stimulation of the PKC pathway significantly reduced MCF-7 cell proliferation in a time-dependent manner. A cell growth inhibitor, dexamethasone, at high concentrations, caused a 40% decrease in proliferation of MCF-7 cells and this effect was abolished under conditions of increased HSD11B2 expression. It was concluded that in MCF-7 cells, stimulation of the PKA signal transduction pathway results in the induction of HSD11B2 expression and that this effect is markedly reduced by activation of the PKC pathway. Activation of the PKC pathway also resulted in inhibition of cell proliferation, while activation of the PKA pathway abolished the antiproliferative effect of dexamethasone. These effects might be due to oxidation of dexamethasone by the PKA-inducible HSD11B2.  相似文献   

7.
Insulin-like growth factor-1 (IGF-1) signaling system exerts a broad antiapoptotic function and plays a crucial role in resistance to anticancer therapies. Exposure of MCF-7 breast cancer cells to IGF-1 rapidly and transiently induced tyrosine phosphorylation and activation of phosphoinositide-dependent kinase-1 (PDK1). This was paralleled by Akt/protein kinase B and protein kinase C-ζ phosphorylation, at Thr308 and Thr410, respectively. IGF-1 treatment also enhanced PDK1 interaction with IGF-1 receptor (IGF-1R) in intact MCF-7 cells. Pulldown assays revealed that PDK1 bound IGF-1R in vitro and that the region encompassing amino acids 51–359 of PDK1 was necessary for the interaction. Synthetic peptides corresponding to IGF-1R C terminus amino acids 1295–1337 (C43) and to PDK1 amino acids 114–141 reduced in vitro IGF-1R/PDK1 interaction in a concentration-dependent manner. Loading of fluoresceinated-C43 (fluorescein isothiocyanate (FITC)-C43) into MCF-7 cells significantly reduced IGF-1R/PDK1 interaction and phosphorylation of PDK1 substrates. Moreover, FITC-C43 intracellular loading reverted the protective effect of IGF-1 on growth factor deprivation-induced cell death. Finally, the inhibition of IGF-1R/PDK1 interaction and signaling by FITC-C43 was accompanied by 2-fold enhanced killing capacity of cetuximab in human GEO colon adenocarcinoma cells and was sufficient to restore cell death in cetuximab-resistant cell clones. Thus, disruption of PDK1 interaction with IGF-1R reduces IGF-1 survival effects in cancer cells and may enhance cell death by anticancer agents.  相似文献   

8.
Exposure of MCF-7 human breast cancer cells to phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) results in a dose-dependent inhibition of cell proliferation. One of the earliest biochemical events induced by TPA is the translocation of protein kinase C from the cytosolic to the particulate compartment. We have investigated the effects of permeant diacylglycerol 1,2-dioctanoyl-glycerol (diC8) on both protein kinase C activity and MCF-7 cell proliferation. DiC8 induces a discrete but significant translocation of protein kinase C within the first minutes of MCF-7 cell treatment (26 +/- 6%, mean +/- SD of 5 different experiments, upon 5 min incubation in the presence of 43 micrograms/ml diC8). However, this effect is only transient as the enzymatic activity returns to the control value after 60 min. DiC8 mimics the effect of TPA on MCF-7 cell proliferation. The dose-response curves for both protein kinase C translocation and cell growth inhibition show that diC8 exerts its effects on both parameters in the same range of concentrations, despite some discrepancies at the lowest doses. We also report that long-term treatment of the cells with diC8 does not lead to the protein kinase C disappearance observed during prolonged exposure to TPA. All together, our results reinforce the hypothesis of a negative modulatory role of protein kinase C in MCF-7 cell proliferation and suggest that the enzyme translocation but not its down-regulation could be a pre-requisite in the biological cell response.  相似文献   

9.
Hong F  Kwon SJ  Jhun BS  Kim SS  Ha J  Kim SJ  Sohn NW  Kang C  Kang I 《Life sciences》2001,68(10):1095-1105
Oxidative stress plays a critical role in cardiac injuries during ischemia/reperfusion. Insulin-like growth factor-1 (IGF-1) promotes cell survival in a number of cell types, but the effect of IGF-1 on the oxidative stress has not been elucidated in cardiac muscle cells. Therefore, we examined the role of IGF-1 signaling pathway in cell survival against H2O2-induced apoptosis in H9c2 cardiac myoblasts. H2O2 treatment induced apoptosis in H9c2 cells, and pretreatment of cells with IGF-1 suppressed apoptotic cell death. The antiapoptotic effect of IGF-1 was blocked by LY294002 (an inhibitor of phosphatidylinositol 3-kinase) and by PD98059 (an inhibitor of extracellular signal-regulated kinase (ERK)). The protective effect of IGF-1 was also blocked by rapamycin (an inhibitor of p70 S6 kinase). Furthermore, H9c2 cells stably transfected with constitutively active PI 3-kinase (H9c2-p110*) and Akt (H9c2-Gag-Akt) constructs were more resistant to H2O2 cytotoxicity than control cells. Although H2O2 activates both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK), IGF-1 inhibited only JNK activation. Activated PI 3-kinase (H9c2-p110*) and pretreatment of cells with IGF-1 down-regulated Bax protein levels compared to control cells. Taken together, our results suggest that IGF-1 transmits a survival signal against oxidative stress-induced apoptosis in H9c2 cells via PI 3-kinase and ERK-dependent pathways and the protective effect of IGF-1 is associated with the inhibition of JNK activation and Bax expression.  相似文献   

10.
11.
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and G?6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.  相似文献   

12.
13.
We have reported that nordihydroguaiaretic acid (NDGA) inhibits the tyrosine kinase activities of the IGF-1 receptor (IGF-1R) and the HER2 receptor in breast cancer cells. Herein, we studied the effects of NDGA on the growth of estrogen receptor (ER) positive MCF-7 cells engineered to overexpress HER2 (MCF-7/HER2-18). These cells are an in vitro model of HER2-driven, ER positive, tamoxifen resistant breast cancer. NDGA was equally effective at inhibiting the growth of both parental MCF-7 and MCF-7/HER2-18 cells. Half maximal effects for both cell lines were in the 10-15 microM range. The growth inhibitory effects of NDGA were associated with an S phase arrest in the cell cycle and the induction of apoptosis. NDGA inhibited both IGF-1R and HER2 kinase activities in these breast cancer cells. In contrast, Gefitinib, an epidermal growth factor receptor inhibitor but not an IGF-1R inhibitor, was more effective in MCF-7/HER2-18 cells than in the parental MCF-7 cells and IGF binding protein-3 (IGFBP-3) was more effective against MCF-7 cells compared to MCF-7/HER2-18. MCF-7/HER2-18 cells are known to be resistant to the effects of the estrogen receptor inhibitor, tamoxifen. Interestingly, NDGA not only inhibited the growth of MCF-7/HER2-18 on its own, but it also demonstrated additive growth inhibitory effects when combined with tamoxifen. These studies suggest that NDGA may have therapeutic benefits in HER2-positive, tamoxifen resistant, breast cancers in humans.  相似文献   

14.
15.
To gain insight into the mechanisms involved in the cross-talk between IGF-1 receptor (IGF-1R) and estrogen receptor signaling pathways, we used MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression. Growth of NEO cells (control MCF-7 cells) was stimulated by both IGF-1 and estradiol (E2), and the addition of both mitogens resulted in a synergistic response. Estrogen enhanced IGF-1R signaling in NEO cells, but this effect was markedly diminished in SX13 cells. Estrogen was also able to potentiate the IGF-1 effect on the expression of cyclin D1 and cyclin E and on the phosphorylation of retinoblastoma protein in control but not in SX13 cells. IGF-1 increased the protein level of p21 and the luciferase activity of the p21 promoter, whereas it only reduced the protein level of p27 without affecting p27 promoter activity. Estrogen did not affect the p21 inhibitor, but it decreased the protein level of p27 and the p27 promoter luciferase activity. These effects of both mitogens were also observed at the level of association of both cyclin-dependent kinase inhibitors with CDK2 suggesting that IGF-1 and E2 affect the activity of both p21 and p27. Taken together, these data suggest that in MCF-7 cells, estrogen potentiates the IGF-1 effect on IGF-1R signaling as well as on the cell cycle components. Moreover, IGF-1 and E2 regulate the expression of p21 and p27 and their association with CDK2 differently.  相似文献   

16.
Skin keratinocytes are subject to frequent chemical and physical injury and have developed elaborate cell survival mechanisms to compensate. Among these, the Akt/protein kinase B (PKB) pathway protects keratinocytes from the toxic effects of ultraviolet light (UV). In contrast, the protein kinase C (PKC) family is involved in several keratinocyte death pathways. During an examination of potential interactions among these two pathways, we found that the insulin-like growth factor (IGF-1) activates both the PKC and the Akt signaling pathways in cultured primary mouse keratinocytes as indicated by increased phospho-PKC and phospho-Ser-473-Akt. IGF-1 also selectively induced translocation of PKCdelta and PKCepsilon from soluble to particulate fractions in mouse keratinocytes. Furthermore, the PKC-specific inhibitor, GF109203X, increased IGF-1-induced phospho-Ser-473-Akt and Akt kinase activity and enhanced IGF-1 protection from UVC-induced apoptosis. Selective activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) reduced phospho-Ser-473-Akt, suggesting that activation of PKC inhibits Akt activity. TPA also attenuated IGF-1 and epidermal growth factor-induced phospho-Ser-473-Akt, reduced Akt kinase activity, and blocked IGF-1 protection from UVC-induced apoptosis. The inhibition of Akt activity by TPA was reduced by inhibitors of protein phosphatase 2A, and TPA stimulated the association of phosphatase 2A with Akt. Individual PKC isoforms were overexpressed in cultured keratinocytes by transduction with adenoviral vectors or inhibited with PKC-selective inhibitors. These studies indicated that PKCdelta and PKCepsilon were selectively potent at causing dephosphorylation of Akt and modifying cell survival, whereas PKCalpha enhanced phosphorylation of Akt on Ser-473. Our results suggested that activation of PKCdelta and PKCepsilon provide a negative regulation for Akt phosphorylation and kinase activity in mouse keratinocytes and serve as modulators of cell survival pathways in response to external stimuli.  相似文献   

17.
Chromogranin A is a major component of storage granules in many different secretory cell types. After [35S]methionine labelling of proteins from cultured bovine chromaffin cells, chromogranin A was immunoprecipitated with specific antibodies, and the radioactivity incorporated into chromogranin A was determined and used as an index of its synthesis rate. Depolarization of cells with nicotine or high K+ evoked a Ca2+-dependent increase in chromogranin A synthesis, whereas muscarine, which does not evoke significant Ca2+ influx from bovine chromaffin cells, had no effect on chromogranin A synthesis. Forskolin, an activator of adenylate cyclase, affected neither the basal nor the nicotine-stimulated rate of chromogranin A synthesis. In contrast, 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, significantly enhanced the incorporation of radioactivity into chromogranin A. Sphingosine, an inhibitor of protein kinase C, abolished both nicotine-stimulated and TPA-induced chromogranin A synthesis. In addition, long-term treatment of chromaffin cells with TPA decreased protein kinase C activity and inhibited the nicotine-stimulated chromogranin A synthesis. These results suggest that protein kinase C may play an important role in the control of chromogranin A synthesis.  相似文献   

18.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

19.
We studied the involvement of protein kinase C in the induction of spermidine/spermine N1-acetyltransferase, a rate-limiting enzyme of polyamine degradation, in bovine lymphocytes. When phytohemagglutinin (PHA) and H-7, a protein kinase inhibitor, were added simultaneously to lymphocyte cultures, the elevation caused by PHA of spermidine/spermine N1-acetyltransferase activity at 24 h after administration was reduced. In cells treated with a lower concentration of PHA, the acetyltransferase activity was enhanced with 12-o-tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C, and reached the level of cells with a higher concentration of PHA. PHA did not cause maximum induction of the enzyme in cells treated with 160 ng/ml TPA. The induction of this acetyltransferase with PHA is probably mediated by protein kinase C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号