首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several hypolipidemic drugs and environmental contaminants induce hepatic peroxisome proliferation and hepatic tumors when administered to rodents. These chemicals increase the expression of the peroxisomal β-oxidation pathway and the cytochrome P-450 4A family, which metabolize lipids, including eicosanoids and their precursor fatty acids. We previously found that the peroxisome proliferator ciprofibrate decreases the level of eicosanoids in the liver and in cultured hepatocytes. In this study, we examined the effect of prostaglandins E2 and F (PGE2 and PGF), leukotriene C4 (LTC4) and the peroxisome proliferator ciprofibrate on DNA synthesis in cultured hepatocytes. Primary rat hepatocytes were cultured on collagen gels in serum-free L-15 medium with varying concentrations of eicosanoids and ciprofibrate, and the absence or presence of growth factors. Ciprofibrate lowered hepatocyte eicosanoid concentrations; the addition of eicosanoids restored their levels. After a 48-h exposure with [3H]-thymidine, DNA synthesis was determined by measuring [3H]-thymidine incorporation into DNA. The addition of PGE2, PGF, and LTC4 to cultures along with ciprofibrate increased DNA synthesis, whereas treatment with ciprofibrate or eicosanoids alone resulted in a much smaller increase. The addition of epidermal growth factor (EGF) to the eicosanoid-ciprofibrate combination increased DNA synthesis more than EGF or the eicosanoid-ciprofibrate combination alone. The PGF-ciprofibrate combination also was comitogenic with transforming growth factor-α and hepatocyte growth factor. The addition of both ciprofibrate and prostaglandins also blocked the growth inhibitory effect of transforming growth factor-β on DNA synthesis induced by EGF. These results show that the eicosanoids PGE2, PGF, and LTC4 are comitogenic with the peroxisome proliferator ciprofibrate in cultured rat hepatocytes. © 1996 Wiley-Liss, Inc.  相似文献   

2.
3.
The hypolipidaemic agents ciprofibrate and Wy-14,643 ([4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid) and the phthalate-ester plasticizer di-(2-ethylhexyl)-phthalate (DEHP), like other peroxisome proliferators, produce a significant hepatomegaly and induce the peroxisomal fatty acid beta-oxidation enzyme system together with profound proliferation of peroxisomes in hepatic parenchymal cells. Changes in the profile of liver proteins in rats following induction of peroxisome proliferation by ciprofibrate, Wy-14,643 and DEHP have been analysed by high-resolution two-dimensional gel electrophoresis. The proteins of whole liver homogenates from normal and peroxisome-proliferator-treated rats were separated by two-dimensional gel electrophoresis using isoelectric focusing for acidic proteins and nonequilibrium pH gradient electrophoresis for basic proteins. In the whole liver homogenates, the quantities of six proteins in acidic gels and six proteins in the basic gels increased following induction of peroxisome proliferation. Peroxisome proliferator administration caused a repression of three acidic proteins in the liver homogenates. By the immunoblot method using polyspecific antiserum against soluble peroxisomal proteins and monospecific antiserum against peroxisome proliferation associated Mr 80000 polypeptide (polypeptide PPA-80), the majority of basic proteins induced by these peroxisome proliferators appeared to be peroxisomal proteins. Polypeptide PPA-80 becomes the most abundant protein in the total liver homogenates of peroxisome-proliferator-treated rats. These results indicate that ciprofibrate, DEHP and Wy-14,643 induce marked changes in the profile of specific hepatic proteins and that some of these changes should serve as a baseline to identify a set of gene products that may assist in defining the specific 'peroxisome proliferator domain'.  相似文献   

4.
Summary— The response of two rat cell lines, Fao and MH1C1, and one human cell line, HepG2, to the peroxisome proliferator ciprofibrate, was studied. Using a fluorometric assay for palmitoyl-CoA oxidase, the dose- and time-dependent increase of this enzymatic activity was determined. From the lowest concentration (100 μM) stimulation is evident in the two rat cell lines. In the Fao line, the activity was stimulated reaching a seven-fold increase over the control level at 250 μM after 72 h of treatment. In the MH1C1 line, the maximum stimulation, four- to five-fold, was obtained at 250 and 500 μM after 72 h. In the HepG2 cell line, activity increased two-fold at 250 μM after 72 h reaching a three-fold increase at 1000 μM after 48 h. Ciprofibrate was more toxic to Fao cells than to MH1C1 and HepG2 cells which is also the order of the acyl-CoA oxidase stimulation by ciprofibrate. These preliminary results suggest that the two rat cell lines are appropriate for investigating the induction of peroxisomal β-oxidation enzymes and the expression of their genes. The HepG2 cell line is a complementary model for the study of interspecies differences in the response to peroxisomal proliferators and of the peroxisomal functions implied in the lipid metabolism of human liver.  相似文献   

5.
The effects of the peroxisome proliferator nafenopin upon primary cultures of marmoset hepatocytes have been investigated and compared to those on cultured rat hepatocytes. Nafenopin did not induce peroxisomal beta-oxidation or peroxisome proliferation but did induce replicative DNA synthesis. These findings demonstrate that peroxisome proliferation and mitogenicity are two independent properties of nafenopin and question the widely held view that primates are generally insensitive to the effects of peroxisome proliferators.  相似文献   

6.
For the analysis of the molecular mechanism of the action of peroxisome proliferators, we attempted to establish the optimal conditions for obtaining the effects of the chemicals in vitro, employing an established cell line, Reuber rat hepatoma H4IIEC3. Histochemical analyses revealed a marked increase in the number, size, and catalase content of peroxisomes in the cells cultured on a medium containing 0.5 mM ciprofibrate, a peroxisome proliferator. The activity of acyl-CoA oxidase, the initial enzyme of the peroxisomal beta-oxidation system, was increased by more than 10-fold by the same treatment. Catalase was also induced significantly, whereas the activities of glutamate dehydrogenase and lactate dehydrogenase, mitochondrial and cytosolic marker enzymes, did not change upon the treatment. Immunoblotting and RNA-blotting analyses confirmed the increases in the amount of protein and mRNA for all the three enzymes of the peroxisomal beta-oxidation system. Cell fractionation experiments gave a partial separation of peroxisomes from other organelles for the induced culture. Thus, H4IIEC3 cells offer a good in vitro model system of the induction of peroxisomes and peroxisomal beta-oxidation enzymes by peroxisome proliferators.  相似文献   

7.
PPAR: a mediator of peroxisome proliferator action   总被引:6,自引:0,他引:6  
Stephen Green 《Mutation research》1995,333(1-2):101-109
  相似文献   

8.
Peroxisome proliferators are a class of hepatic carcinogens in rodents and have been proposed to act in part by increasing oxidative stress. Fatty acyl CoA oxidase (FAO), which is highly induced by peroxisome proliferators, is the hydrogen peroxide-generating enzyme of the peroxisomal beta-oxidation pathway. We previously showed that the treatment of rats and mice with the peroxisome proliferator ciprofibrate resulted in increased hepatic NF-kappaB activity and suggested that this effect may be secondary to the action of H2O-generating enzymes. To test this possibility directly, we have determined whether transient overexpression of FAO, in the absence of peroxisome proliferators, leads to NF-kappaB activation. Here, we show that FAO overexpression in Cos-1 cells, in the presence of an H2O-generating substrate, can activate a NF-kappaB regulated reporter gene. Electrophoretic mobility shift assays further demonstrated that FAO expression increases nuclear NF-kappaB DNA binding activity in a dose-dependent manner. The antioxidants vitamin E and catalase can inhibit this activation. These results indicate that FAO mediates, at least in part, peroxisome proliferator-induced NF-kappaB activation.  相似文献   

9.
The objective of this study was to evaluate species differences in the hepatic effects of three potent rodent peroxisome proliferators, namely methylclofenapate (MCP), ciprofibrate (CIP) and Wy-14,643 (WY), particularly with respect to effects on replicative DNA synthesis and transforming growth factor-beta1 (TGF-beta1) gene expression. Male Sprague-Dawley rats, Syrian hamsters and Dunkin-Hartley guinea pigs were given daily oral doses of 0 (corn oil) and 75 mg/kg MCP for periods of 6 and 21 days. Syrian hamsters and guinea pigs were also treated with 25 mg/kg CIP and 25 mg/kg WY. Relative liver weights were significantly increased in peroxisome proliferator-treated rats and Syrian hamsters, but not in guinea pigs. Hepatic peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidising enzyme activities and CYP4A isoform mRNA levels were significantly increased in rats and Syrian hamsters, whereas only minor effects were observed in the guinea pig. Replicative DNA synthesis was studied by implanting 7-day osmotic pumps containing 5-bromo-2'-deoxyuridine during study days -1 to 6 and 14 to 21. Hepatocyte labelling index values were increased by MCP in the rat, but neither MCP, CIP nor WY produced any significant effect on replicative DNA synthesis in the Syrian hamster and guinea pig. MCP treatment increased TGF-beta1 and insulin-like growth factor II/mannose-6-phosphate (IGFII/Man6P) receptor gene expression in the rat. In the Syrian hamster, effects on TGF-beta1 and IGFII/Man6P receptor gene expression were also observed in some instances, whereas TGF-beta1 mRNA levels were essentially unchanged in the guinea pig. These results provide further evidence for marked species differences in response to rodent peroxisome proliferators. While peroxisome proliferators produce a wide spectrum of effects in rat liver, other species such as the Syrian hamster and guinea pig are less responsive and in the case of some endpoints (e.g., cell replication) may be refractory.  相似文献   

10.
The peroxisome proliferators perfluorooctanoic acid (PFOA; 0.02% w/w), perfluorodecanoic acid (PFDA; 0.02%, w/w), nafenopin (0.125%, w/w), clofibrate (0.5%, w/w), and acetylsalicylic acid (ASA; 1%, w/w) were administered to male C57 BL/6 mice in their diet for two weeks. Parameters for Fe3+ ADP, NADPH or ascorbic acid-initiated lipid peroxidation in vitro were measured. Approximately a twofold increase in susceptibility to lipid peroxidation was obtained for all the peroxisome proliferators tested. Cotreatment of mice with the peroxisome proliferator ASA (1%, w/w) and a catalase inhibitor, 3-amino-1,2,4-triazole (AT; 0.4%, w/w) for 7 days resulted in little inhibition of peroxisome proliferation, an elevated level of H2O2 in vivo, and total inhibition of the increased susceptibility to lipid peroxidation in vitro. No increase in lipid peroxidation in vivo was observed. Certain antioxidant enzymes (DT-diaphorase, superoxide dismutase, glutathione transferase, glutathione peroxidase, and glutathione reductase) and components (ubiquinone and α-tocopherol) were also measured. The results showed that there was some induction of these antioxidant enzymes and components by ASA or aminotriazole, except for glutathione peroxidase and superoxide dismutase, which were inhibited. The possible involvement of oxidative stress in the carcinogenicity of peroxisome proliferators is discussed.  相似文献   

11.
12.
The control of ubiquinone biosynthesis by peroxisome proliferators was investigated using peroxisome proliferator activated receptor alpha (PPARalpha)-null mice. Administration of 2-(diethylhexyl)phthalate to control mice resulted in elevated ubiquinone levels in the liver, while dolichol, dolichyl-P and cholesterol concentrations remained unchanged. In PPARalpha-null mice, the level of these lipids were similar to control levels and administration of the peroxisome proliferator did not increase the levels of ubiquinone. The increase in ubiquinone levels was the result of increased synthesis. Induction was most pronounced in liver, kidney and heart, which have relatively high levels of PPARalpha. When the tissue concentration of hydrogen peroxide was elevated by inhibition of catalase activity with aminotriazole, the amount of ubiquinone was not increased, suggesting that the induction of ubiquinone synthesis occured through a direct mechanism. The activities of branch-point enzymes FPP-synthase, squalene synthase, cis-prenyltransferase, trans-prenyltransferase and NPHB-transferase were substantially increased in control but not in PPARalpha-null mice after treatment with peroxisome proliferators. These data suggest that the induction of ubiquinone biosynthesis after administration of peroxisome proliferators is dependent on the PPARalpha through regulation of some of the mevalonate pathway enzymes.  相似文献   

13.
The purpose of this study was to determine if the hypolipidemic peroxisome proliferator ciprofibrate, which induces peroxisomes in the liver, can induce peroxisomes in cultured porcine pulmonary endothelial cells. Ciprofibrate was added at three concentrations to cell cultures for a 6-day period. The induction of peroxisomes in the cells was detected by determining total peroxisomal beta-oxidation and peroxisomal catalase activity. The addition of ciprofibrate was found to increase peroxisomal enzyme activities in a dose-dependent manner, with the highest activity being reached at 1000 microM ciprofibrate. Ciprofibrate also caused an increased transfer of albumin across endothelial cells cultured on micropore filters. This study shows that peroxisomal enzyme activities can be induced by ciprofibrate in endothelial cells, which may have implications in diseases mediated by vascular injury.  相似文献   

14.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

15.
The effects of feeding the peroxisome proliferators ciprofibrate (a hypolipidaemic analogue of clofibrate) or POCA (2-[5-(4-chlorophenyl)pentyl]oxirane-2-carboxylate) (an inhibitor of CPT I) to rats for 5 days on the distribution of carnitine and acylcarnitine esters between liver, plasma and muscle and on hepatic CoA concentrations (free and acylated) and activities of carnitine acetyltransferase and acyl-CoA hydrolases were determined. Ciprofibrate and POCA increased hepatic [total CoA] by 2 and 2.5 times respectively, and [total carnitine] by 4.4 and 1.9 times respectively, but decreased plasma [carnitine] by 36-46%. POCA had no effect on either urinary excretion of acylcarnitine esters or [acylcarnitine] in skeletal muscle. By contrast, ciprofibrate decreased [acylcarnitine] and [total carnitine] in muscle. In liver, ciprofibrate increased the [carnitine]/[CoA] ratio and caused a larger increase in [acylcarnitine] (7-fold) than in [carnitine] (4-fold), thereby increasing the [short-chain acylcarnitine]/[carnitine] ratio. POCA did not affect the [carnitine]/[CoA] and the [short-chain acylcarnitine]/[carnitine] ratios, but it decreased the [long-chain acylcarnitine]/[carnitine] ratio. Ciprofibrate and POCA increased the activities of acyl-CoA hydrolases, and carnitine acetyltransferase activity was increased 28-fold and 6-fold by ciprofibrate and POCA respectively. In cultures of hepatocytes, ciprofibrate caused similar changes in enzyme activity to those observed in vivo, although [carnitine] decreased with time. The results suggest that: (1) the reactions catalysed by the short-chain carnitine acyltransferases, but not by the carnitine palmitoyltransferases, are near equilibrium in liver both before and after modification of metabolism by administration of ciprofibrate or POCA; (2) the increase in hepatic [carnitine] after ciprofibrate or POCA feeding can be explained by redistribution of carnitine between tissues; (3) the activity of carnitine acetyltransferase and [total carnitine] in liver are closely related.  相似文献   

16.
Induction and origin of hepatocytes in rat pancreas   总被引:10,自引:1,他引:9       下载免费PDF全文
《The Journal of cell biology》1984,98(6):2082-2090
2-[4(2,2- Dichlorocyclopropyl )phenoxy]2-methyl propionic acid (ciprofibrate), a peroxisome proliferator , induced hepatocytes in the pancreas of adult male F-344 rats when added to their diet at a dosage of 10 mg/kg body weight for 60-72 wk. These cells are morphologically indistinguishable from hepatic hepatocytes and were usually localized adjacent to islets of Langerhans with extensions into surrounding acinar tissue. A significant increase in the volume density of peroxisomes, together with immunochemically detectable amounts of two peroxisome-associated enzymes, was observed in pancreas with hepatocytes of rats maintained on ciprofibrate. Uricase-containing crystalloid nucleoids, specific for rat hepatocyte peroxisomes, were present in pancreatic hepatocytes. These structures facilitated the identification of cells with hybrid cytoplasmic features characteristic of pancreatic acinar and endocrine cells and hepatocytes. Such cells are presumed to represent a transitional state in which pancreas specific genes are being repressed while liver specific ones are simultaneously expressed. The presence of exocrine and/or endocrine secretory granules in transitional cells indicates that acinar/intermediate cells represent the precursor cell from which pancreatic hepatocytes are derived.  相似文献   

17.
Image cytometry was used to quantify the volume of liver expressing two histochemical markers associated with neoplasia, gamma-glutamyl transpeptidase (GGT) and the placental isozyme of glutathione S-transferase (GST-P). Rats were treated with diethylnitrosamine (DENA) followed by phenobarbital (PB), di(2-ethylhexyl)phthalate (DEHP), or di-n-octyl-phthalate (DOP) for 26 weeks. In one series, PB-treated rats were given 2.0%, 0.5%, or 0.1% DEHP in the feed. GGT expression was detected diffusely throughout the liver parenchyma in several treatment groups so that any enhanced expression in altered foci (AF) and nodules (N) was not apparent. GST-P was detected only in AF and N. GST-P may represent a second genetic alteration, as GST-P+ AF and N also expressed GGT but not the reverse. The peroxisome proliferator DEHP inhibited expression of GGT or GST-P in livers of either DENA-treated or DENA+PB-treated rats. With GST-P the reduction was correlated to a reduced number of AF and N. In contrast, DEHP's stereoisomer, DOP, was as effective as PB in promoting expression of both markers. We conclude that image cytometry of hepatocytes expressing GST-P can be used in the bioassay of the carcinogenic potential of chemicals that affect liver proliferation.  相似文献   

18.
The induction of liver fatty acid binding protein (L-FABP) by the peroxisome proliferators bezafibrate and clofibrate was compared with the induction of peroxisomal (cyanide-insensitive) palmitoyl-CoA oxidation in cultured rat hepatocytes maintained on a substratum of laminin-rich (EHS) gel. This substratum was chosen because marked induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was effected by bezafibrate in hepatocytes supported on EHS gel, whereas only peroxisomal palmitoyl-CoA oxidation was induced in hepatocytes maintained on collagen-coated plates. In control cells on EHS, activity of peroxisomal palmitoyl-CoA oxidation remained stable, while L-FABP abundance declined with time, and L-FABP mRNA was undetectable after 5 days. In cultures exposed to bezafibrate or clofibrate, peroxisomal palmitoyl-CoA oxidation activity was induced earlier and more rapidly than L-FABP. When fibrates were withdrawn, peroxisomal palmitoyl-CoA oxidation declined rapidly, whereas L-FABP continued to increase. L-FABP induction was accompanied by a striking increase in mRNA specifying this protein. Tetradecylglycidic acid, an inhibitor of carnitine palmitoyltransferase I, effectively doubled peroxisomal palmitoyl-CoA oxidation activity. However, tetradecylglycidic acid markedly inhibited fibrate induction of L-FABP and peroxisomal palmitoyl-CoA oxidation but, unexpectedly, did not prevent the fibrate-induced proliferation of peroxisomes. Maximal induction of both L-FABP and peroxisomal palmitoyl-CoA oxidation was produced at a bezafibrate concentration in the culture medium (0.05 mM) much lower than that of clofibrate (0.3 mM). Also, bezafibrate, but not clofibrate, inhibited [1-14C]oleic acid binding to L-FABP with a Ki = 9.5 microM. We conclude that hepatocytes maintained on EHS gel provide an important tool for investigating the regulation of L-FABP. These studies show that the induction of peroxisomal beta-oxidation and L-FABP by peroxisome proliferators are temporally consecutive but closely related processes which may be dependent on a mechanism distinct from that which leads to peroxisome proliferation. Furthermore, the mechanism of action of the more potent peroxisome proliferator, bezafibrate, may be mediated, in part, by interaction of this agent with L-FABP.  相似文献   

19.
The sensitivity of sheep myometrial tissue to prostaglandin F (PGF), PGE2, the thromboxane analog U-44069, and leukotrienes C4 (LTC4) and LTD4 was investigated in a superfusion system. Tissues were obtained from eight oophorectomized ewes, with or without pretreatment with estradiol-17β. After equilibration, spontaneous activity was abolished by adding indomethacin to the superfusion fluid. The dose needed to induce a contraction with a peak level of 50% of the median peak level of spontaneous contractions increased from PGE2 to PGF, U-44069, LTC4, and LTD4. The differences between the doses required were significant for all compounds, except between LTC4 and LTD4. Estradiol-17β pretreatment caused an increase in the required dose of PGF. The results of this study do not support the hypothesis that leukotrienes are involved in the regulation of myometrial activity.  相似文献   

20.
The interaction of leukotriene C4 (LTC4) with the contractile activity of histamine (H), serotonin (5HT) and norepinephrine (NE) has been investigated in isolated vascular preparations. Threshold concentration of LTC4 (5 × 10−9 M) significantly potentiated the vasoconstricting effect of these compounds on guinea-pig pulmonary artery (GPPA). This phenomenon was long-lasting for H since it was still present 40 min after LTC4 had been washed. FPL-55712 (10−5M) counteracted the increased H response on GPPA induced by LTC4. Potentiation of H activity due to LTC4 was also observed on guinea-pig thoracic aorta (GPTA) indicating that LTC4-induced hyperreactivity is not a phenomenon restricted to the pulmonary vascular bed. In the experiments carried out in presence of indomethacin (3 × 10−6M), LTC4 still potentiated H-induced vasoconstriction on GPPA, however the time course of the phenomenon was significantly shorter than that observed in absence of the cyclooxygenase inhibitor. The contractile activity of H and NE on guinea-pig portal vein (GPPV) was not potentiated by LTC4 These results demonstrate that LTC4 induces hyperreactivity of the arterial vascular tissue to vasoactive compounds and suggest that cysteinyl-leukotrienes may have pathological significance in the hemodynamic changes occurring during anaphylactic reactions. Preliminary experiments carried out on human intralobar pulmonary artery strongly support this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号