首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In heterozygous carriers of the mouse reciprocal translocation T(14;15)6Ca, the frequency of nondisjunction involving the minute marker chromosome was 4.4% in the male and 22.2% in the female. The fate of gametes with unbalanced genomes derived from normal as well as abnormal meiotic disjunction in T6 heterozygotes was investigated on the basis of chromosome counts at metaphase II and karyotype analyses in early postimplantation embryos produced by backcrossing with chromosomally normal animals. Results obtained indicate that meiotic, gametic, and zygotic selection attributable to specific types of chromosomal imbalances is minimal, if any, by the late blastocyst stage. All zygotes with unbalanced genomes, except those with 20 normal pairs plus the minute marker, however, die off in the latter half of pregnancy. Therefore, the increased incidence of translocation trisomics among progeny of female as compared with male heterozygotes reflects the higher incidence of nondisjunction in primary oocytes than in spermatocytes.  相似文献   

2.
Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight into the cytogenetic mechanisms underlying their formation and the consequences for human fertility.  相似文献   

3.
To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.

During sexual reproduction, fertilization must happen between exactly two gametes to ensure genome stability. This study shows that two mechanisms – establishment of zygotic fate and re-entry to the cell cycle – combine to prevent fission yeast zygotes fusing with further gametes.  相似文献   

4.
In vitro fertilization (IVF) of isolated male and female gametes of flowering plants was first accomplished in the last decade. Successful isolation of male and female gametes, and culturing of in vitro zygotes to form new plants, is a prelude to the use of IVF for research into the cellular and molecular control of fertilization in higher plants and its application as a tool in biotechnology. Genes unique to male and female gametes and zygotes of higher plants, although currently incompletely characterized, are expected to permit direct molecular dissection of fertilization. By applying IVF and microculture to zygotes and endosperm obtained by both in vivo and in vitro methods, newly activated fusion products may be observed and manipulated in media where they are directly accessible to the techniques of molecular cell biology. IVF and zygote culture may also offer potential for creating new hybrid plants by fusing isolated gametes from different species to produce unique zygotes and ultimately plants that would be impossible to obtain using typical crossing techniques. Transformation and regeneration frequencies using IVF may also be high enough to avoid the necessity of adding controversial antibiotic and herbicide resistant genes to screen transformed products. This review describes advances using IVF in plant sexual reproduction and discusses its potential in the genetic improvement of flowering plants.  相似文献   

5.
Fertilization-induced Ca(2+)spiking in mouse zygotes ceases at the end of pre-G1 as pronuclei (PN) form. In the present studies we found that there was no consistent temporal relationship between PN formation and cessation of spiking. We also show that nucleate and anucleate fragments of zygotes, obtained by bisection of fertilized eggs prior to PN formation, both ceased spiking at times that did not depend on the presence of the PN. We, therefore, concluded that formation of the PN does not cause spiking cessation. The possibility that cessation of the fertilization-induced Ca(2+)spiking may be mediated by a redox sensitive mechanism affecting the sensitivity of Ca(2+)release from internal stores is proposed. At first mitosis, a small proportion of zygotes show low amplitude calcium spikes prior to pronuclear envelope breakdown (PNEBD), whereas all zygotes spiked at this time in the presence of high extracellular Ca(2+)and dithiothreitol. Nucleated zygotic fragments also spiked before PNEBD whereas anucleated ones rarely did. Exit from G2 was required for this spiking to be observed in nucleated zygotes or fragments. Arrest in M-phase resulted in the appearance of a prolonged series of small amplitude spikes. It is concluded that the spiking at mitosis is cell cycle regulated and may differ qualitatively in its control from that at fertilization.  相似文献   

6.
Chromosome aneuploidy is a major cause of pregnancy loss, abnormal pregnancy and live births following both natural conception and in vitro fertilisation (IVF) and increases exponentially with maternal age in the decade preceding the menopause. Molecular genetic analysis has shown that these are predominantly maternal in origin and trisomies most frequently occur through errors in the first meiotic division. Analysis of chromosome copy number in the three products of female meiosis, the first and second polar bodies and the corresponding zygote by microarray comparative genomic hybridisation (array CGH), in women of advanced maternal age undergoing IVF, has recently revealed a pattern of frequent multiple meiotic errors, caused by premature predivision of sister chromatids in meiosis I and a high incidence of errors in meiosis II. This pattern is similar to those observed in various mouse models which implicate the gradual depletion of cohesins, which are essential for cohesion of sister chromatids, as the primary cause of age related aneuploidy in female meiosis. However, defects in other aspects of meiosis including the formation and stabilisation of chiasmata and the spindle assembly checkpoint (SAC) may also contribute. The challenge remains to explain the molecular basis of ‘physiological’ rather than ‘chronological’ female ageing and the contribution of multifactorial causes from the fetal to adult ovary. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

7.
This is a retrospective, observational study to evaluate the effect of maternal age on the outcomes of in vitro fertilization and embryo transfer (IVF-ET). 11830 IVF-ET cycles from 10268 women were included. Four groups of different maternal age periods were compared. The groups were 21?C30 years old group (4549 cycles), 31?C35 years old group (4424 cycles), 36?C40 years old group (2429 cycles), and over 40 years old group (428 cycles). The mean starting dose of Gn and mean total dose of Gn in each cycle were significantly higher (P<0.01), while the mean retrieved oocyte number was significantly lower (P<0.01) in groups of higher maternal age period than those in each of the lower groups. The biochemical pregnancy rate and the clinical pregnancy rate were significantly lower (P<0.01), while the miscarriage rate was significantly higher (P<0.01) in groups of higher maternal age period than those in the lower groups. No difference was found in two-pronuclear zygotes (2PN) rate and good quality embryo rate among different groups. Birth defect rate was also comparable in the born babies in different groups. In the group with patients?? age over 40 years old, the pregnancy rate was 26.87%, the clinical pregnancy rate was 19.39%, while the miscarriage rate after clinical pregnancy was 36.14%. To draw the conclusion, patients with higher maternal age had worse IVF outcomes. In women of fertile age, patients between 20 and 30 years old have the best IVF outcomes. Patients over 40 years old have poor IVF outcome and high miscarriage rate, which suggested the necessity of preimplantation genetic screening (PGS).  相似文献   

8.
Reactive oxygen species (ROS) play essential roles in plant development and environmental stress responses. In this study, ROS dynamics, the glutathione redox status, the expression and subcellular localization of glutathione peroxidases (GPXs), and the effects of inhibitors of ROS-mediated metabolism were investigated along with fertilization and early zygotic embryogenesis in rice (Oryza sativa). Zygotes and early embryos exhibited developmental arrest upon inhibition of ROS production. Egg cells accumulated high ROS levels, and, after fertilization, intracellular ROS levels progressively declined in zygotes in which de novo expression of GPX1 and 3 was observed through upregulation of the genes. In addition to inhibition of GPX activity, depletion of glutathione impeded early embryonic development and led to failure of the zygote to appropriately decrease H2O2 levels. Moreover, through monitoring of the glutathione redox status, the developing zygotes exhibited a progressive glutathione oxidation, which became extremely delayed under inhibited GPX activity. Our results provide insights into the importance of ROS dynamics, GPX antioxidant activity, and glutathione redox metabolism during zygotic/embryonic development.  相似文献   

9.
Is there selection against aneuploid sperm during spermatogenesis and fertilization? To address this question, we used male mice doubly heterozygous for the Robertsonian (Rb) translocations Rb(6. 16)24Lub and Rb(16.17)7Bnr, which produce high levels of sperm aneuploid for chromosome 16, the mouse counterpart of human chromosome 21. The frequencies of aneuploid male gametes before and after fertilization were compared by analyzing approximately 500 meiosis II spermatocytes and approximately 500 first-cleavage zygotes using fluorescence in situ hybridization with a DNA painting probe mixture containing three biotin-labeled probes specific for chromosomes 8, 16, and 17 plus a digoxigenin-labeled probe specific for chromosome Y. Hyperhaploidy for chromosome 16 occurred in 20.0% of spermatocytes and in 21.8% of zygotes. Hypohaploidy for chromosome 16 occurred in 17.0% and 16.7% of spermatocytes and zygotes, respectively. In addition, there was no preferential association between chromosome 16 aneuploidy and either of the sex chromosomes, nor was there an elevation in aneuploidy for chromosomes not involved in the Rb translocations. These findings provide direct evidence that there is no selection against aneuploid sperm during spermiogenesis, fertilization, and the first cell cycle of zygotic development.  相似文献   

10.
Trichlorfon (TCF) is a widely used pesticide, which according to some epidemiological and experimental data, is suspected of being aneugenic in human and mouse cells. In particular, in vitro studies in mouse oocytes showed the induction of aneuploidy and polyploidy at the first meiotic division and of severe morphological alterations of the second meiotic spindle. We have tested the hypothesis that an acute treatment of mice with TCF might similarly affect chromosome segregation in maturing oocytes. Superovulated MF-1 mice were intraperitoneally injected with 400mg/kg TCF or orally administered with 600mg/kg TCF either at the time of or 4h after human chorionic gonadotrophin (HCG) injection. Oocytes were harvested 17h after HCG and metaphase II chromosomes were cytogenetically analyzed. No significant increase of aneuploid or polyploid cells was detected at any treatment condition. A significant (p<0.001) decrease of metaphases showing premature chromatid separation or premature anaphase II in all TCF-treated groups with respect to controls suggested that TCF treatment may have delayed the first meiotic division. To evaluate possible effects of the pesticide upon the second meiotic division, a group of females orally treated with 600mg/kg TCF at resumption of meiosis was mated with untreated males and zygotes were collected for cytogenetic analysis. No evidence of aneuploidy induction was obtained, but the frequency of polyploid zygotes was increased fivefold over the control level (p<0.01). Such polyploid embryos might have arisen from fertilization of oocytes that were either meiotically delayed and still in metaphase I at fertilization or progressed through anaphase II without cytokinesis. These findings show that in vivo studies on aneuploidy induction in oocytes may yield results different from those obtained by in vitro experiments and that both kinds of data may be necessary for risk assessment of environmentally relevant exposures.  相似文献   

11.
《Theriogenology》2012,77(9):1639-1646
A high potassium concentration in culture media is considered detrimental to in vitro culture of mouse embryos. Here we show that pig zygotic medium (PZM) containing a higher concentration of potassium, and modified to contain 0.2 mM glucose and 0.01 mM EDTA, supported efficient pre- and post-implantation development of mouse zygotes to blastocysts and live pups, respectively. At first, modified PZM (mPZM) was compared with other culture media such as M16, CZB and KSOM-AA for its ability to support development of in vivo mouse zygotes to the blastocyst stage. The proportions of zygotes reaching 2-cell (94–99%) and blastocyst (90–96%) stages in mPZM and other media were not different. However, hatching rates of blastocysts were different (P < 0.05); whereas more than 90% of the blastocysts were hatching in mPZM or KSOM-AA, only 60% of the blastocysts did in M16 or CZB media (P < 0.05). Next we compared post-implantation development of in vitro fertilized zygotes developed to blastocysts in mPZM and KSOM-AA. The proportion of blastocysts developing into live pups was not different between mPZM (49%) and KSOM-AA (44%). Finally, we evaluated whether mPZM could be also used as a fertilization medium. Modified PZM containing 5.56 mM of glucose and 0.4% BSA efficiently supported IVF of mouse gametes. The percent of zygotes cleaving to 2-cell (94–98%) and blastocysts (91–93%) stage was not different from zygotes fertilized in human tubal fluid medium. We concluded that modified pig zygotic medium containing a higher potassium concentration than any other commonly used mouse media supported not only culture of mouse embryos, but also efficient IVF of mouse gametes.  相似文献   

12.
A high potassium concentration in culture media is considered detrimental to in vitro culture of mouse embryos. Here we show that pig zygotic medium (PZM) containing a higher concentration of potassium, and modified to contain 0.2 mM glucose and 0.01 mM EDTA, supported efficient pre- and post-implantation development of mouse zygotes to blastocysts and live pups, respectively. At first, modified PZM (mPZM) was compared with other culture media such as M16, CZB and KSOM-AA for its ability to support development of in vivo mouse zygotes to the blastocyst stage. The proportions of zygotes reaching 2-cell (94-99%) and blastocyst (90-96%) stages in mPZM and other media were not different. However, hatching rates of blastocysts were different (P < 0.05); whereas more than 90% of the blastocysts were hatching in mPZM or KSOM-AA, only 60% of the blastocysts did in M16 or CZB media (P < 0.05). Next we compared post-implantation development of in vitro fertilized zygotes developed to blastocysts in mPZM and KSOM-AA. The proportion of blastocysts developing into live pups was not different between mPZM (49%) and KSOM-AA (44%). Finally, we evaluated whether mPZM could be also used as a fertilization medium. Modified PZM containing 5.56 mM of glucose and 0.4% BSA efficiently supported IVF of mouse gametes. The percent of zygotes cleaving to 2-cell (94-98%) and blastocysts (91-93%) stage was not different from zygotes fertilized in human tubal fluid medium. We concluded that modified pig zygotic medium containing a higher potassium concentration than any other commonly used mouse media supported not only culture of mouse embryos, but also efficient IVF of mouse gametes.  相似文献   

13.
In eukaryotes, DNA synthesis is preceded by licensing of replication origins. We examined the subcellular localization of two licensing proteins, ORC2 and MCM7, in the mouse zygotes and two-cell embryos. In somatic cells ORC2 remains bound to DNA replication origins throughout the cell cycle, while MCM7 is one of the last proteins to bind to the licensing complex. We found that MCM7 but not ORC2 was bound to DNA in metaphase II oocytes and remained associated with the DNA until S-phase. Shortly after fertilization, ORC2 was detectable at the metaphase II spindle poles and then between the separating chromosomes. Neither protein was present in the sperm cell at fertilization. As the sperm head decondensed, MCM7 was bound to DNA, but no ORC2 was seen. By 4 h after fertilization, both pronuclei contained DNA bound ORC2 and MCM7. As expected, during S-phase of the first zygotic cell cycle, MCM7 was released from the DNA, but ORC2 remained bound. During zygotic mitosis, ORC2 again localized first to the spindle poles, then to the area between the separating chromosomes. ORC2 then formed a ring around the developing two-cell nuclei before entering the nucleus. Only soluble MCM7 was present in the G2 pronuclei, but by zygotic metaphase it was bound to DNA, again apparently before ORC2. In G1 of the two-cell stage, both nuclei had salt-resistant ORC2 and MCM7. These data suggest that licensing follows a unique pattern in the early zygote that differs from what has been described for other mammalian cells that have been studied.  相似文献   

14.
During cross‐fertilization between Chinese hamster spermatozoa and Syrian hamster oocytes, incorporated sperm heads frequently fail to develop into male pronuclei, whereas the group of oocyte chromosomes develop into female pronuclei. The present study applies this cross‐fertilization system to the cytogenetic investigation of mammalian hybrid embryos. Immediately after insemination, oocytes were exposed to 0.1 μg/ml nocodazole for 1 hr (1 hr group) or 2 hr (2 hr group), then further cultured. Although the rates of sperm penetration in the 1 hr (48.0%) and 2 hr (75.8%) groups were significantly lower than that in the control group (89.8%), the ratios of male pronuclear formation were higher in both exposed groups (79.4% and 74.2%, respectively) than in the control group (10.6%). These results were apparently due to sperm head decondensation induced during the meiotic arrest of oocytes at metaphase II by nocodazole. Chromosomes of hybrid zygotes obtained after nocodazole exposure were analyzed at the first cleavage metaphase. The incidence of structural chromosome aberrations in the Chinese hamster genome of hybrid zygotes was high in the control (42.1%) and 1 hr (48.8%) groups. This incidence was reduced to 14.4% in the 2 hr group. Because the lag of sperm head decondensation behind the second meiotic division of oocytes was greater in the control and 1 hr groups than in the 2 hr group, untimely sperm head decondensation may be implicated in occurrence of structural chromosome aberrations in the male genomes of hybrid zygotes. Mol. Reprod. Dev. 52:117–124, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

15.
It was shown previously that the frequencies of fertilization and pre- and post-implantation embryonic development of mouse oocytes matured in vitro were similar to those of oocytes matured in vivo (Schroeder and Eppig, Dev Biol 102:493–497, 1984). The present study determined the developmental capacity of mouse oocytes after they had been maintained in meiotic arrest in vitro by substances thought to be important regulators of meiosis in vivo. Oocytes were maintained in meiotic arrest for 12 or 24 h in medium containing maturation inhibitor(s), washed free of inhibitor, and cultured 16 h in inhibitor-free (control) medium to permit meiotic maturation. Four different medium supplements were used to maintain meiotic arrest: (1) 100 μM dibutyryl cAMP plus 1 mM hypoxanthine; (2) 4 mM hypoxanthine plus 0.75 mM adenosine (H + AR); (3) 300 μM dibutyryl cAMP; and (4) 50 μM IBMX. Parallel groups of oocytes were treated to the same experimental protocol except that no inhibitory compounds were used; eg, oocytes were cultured a total of 28 or 40 h in control medium that permitted the resumption of maturation. These latter groups tested the effect of extended culture of mature oocytes on subsequent development. Control oocytes were cultured 16 h in control medium. Oocytes were inseminated and subsequently assessed for development to two-cell and blastocyst stages. When oocytes were first cultured 12 or 24 h in medium that maintained meiotic arrest, development to two-cells in all groups but one were within 10% of controls (70%). The 24 h H + AR group was the one exception (47% two-cells). By contrast, culturing oocytes for 28 or 40 h in inhibitor-free medium resulted in a precipitous decrease in development to two cells (27% and 7%, respectively). Blastocyst development followed the same pattern. When uridine (U) was added to H + AR medium, development to two cells was increased significantly. Also, the addition of FSH to the maturation medium significantly increased both two-cell and blastocyst development in the H + AR and H + AR + U groups. Transfer of compacted morulae from the H + AR + U/FSH group into pseudopregnant hosts produced live young 19 days postinsemination. These data demonstrate that prolonged culture of oocytes matured in vitro decreased their capacity to undergo normal development following insemination, but if oocytes were maintained in meiotic arrest during prolonged culture and then allowed to mature spontaneously, their developmental potential was significantly preserved. These results also lend support for a physiological role of cAMP and purines in the maintenance of meiotic arrest in vivo.  相似文献   

16.
Embryo development during in vitro culture of polyspermic porcine oocytes was investigated in the present study. After in vitro fertilization (IVF) of in vitro matured oocytes, putative zygotes were centrifuged to visualize pronuclei. Two pronuclear (2PN) and poly-pronuclear (PPN) zygotes were selected and cultured in vitro. Their development to the blastocyst stage and total cell numbers, dead cell rates and ploidy at the blastocyst stage and morphology of resultant embryos after first cleavage were compared. A cleavage rate of PPN embryos was lower than that of 2PN (61.3% and 82.2%, respectively), however, the ability of cleaved embryos to develop to the blastocyst stage did not differ between the PPN and the 2PN groups (22.4% and 32.9%, respectively). Also there was no difference in total cell numbers and rates of dead cells between PPN and 2PN blastocysts. The majority of blastocysts in 2PN group were found to be diploid. In contrast, blastocysts in PPN group showed heterogeneous status in their ploidy including polyploidy and mixoploidy, whereas a remarkable proportion (31.3%) of them was found to be diploid. After the first cleavage (at 36 h after IVF), there was no difference in the number of nuclei/embryo between the two groups, nevertheless embryos in PPN group had significantly higher numbers of blastomeres than that of embryos in 2PN group, mainly due to an increased frequency of anuclear blastomeres. The present results indicate that correction of embryo ploidy in polyspermic embryos can occur during IVC. Nevertheless the frequency of partial fragmentation in polyspermic embryos is increased.  相似文献   

17.
The aim of this confocal microscopy study was to determine whether the pattern of CellTracker Green 5-chloromethylfluorescein diacetate (CMFDA) staining changes during meiotic maturation and fertilization in vitro of mouse oocytes. At different times during meiotic maturation and fertilization, oocytes, zygotes and two-cell embryos were stained with CMFDA to demonstrate intracellular glutathione S-transferase activity. After washing in CMFDA-free medium, most oocytes, zygotes and embryos were stained with dihydroethidium (HE) to visualize DNA structures. Meiotic maturation and fertilization in vitro of mouse oocytes were associated with changes in the pattern of intracellular CMFDA staining. In particular, accumulations of CMFDA-positive membranes were observed around the nucleus of germinal vesicle (GV) oocytes, overlaying the sperm nucleus as well as overlaying the first mitotic spindle if this approached the plasma membrane. Staining of oocytes and zygotes with the probes 3,3'-dihexyloxacarbocyanine iodine [DiOC6(3)], which stains all the intracellular membranes, and rhodamine 123, which stains active mitochondria, demonstrated that the intracellular structures evidenced by CMFDA staining did not correspond to accumulations of mitochondria. Exposure of oocytes and zygotes to the microtubule-disrupting agent nocodazole or the actin-depolymerizing drug cytochalasin D revealed an autonomous microfilament-dependent transport and relocation of CMFDA-positive membranes during meiotic maturation and fertilization. Such a transport of CMFDA-positive membranes may be envisaged as a protective shield built to prevent damage to DNA from endogenous and exogenous mutagen metabolites.  相似文献   

18.
Intracytoplasmic sperm injection (ICSI) in pigs is a technique with potential application in diverse fields of animal production and biomedicine. Even though there are some cases of live offspring resulting from this technique, its yield is still quite low compared to other species. The aim of this study was to evaluate different factors affecting the ICSI performance. This was done by studying (1) the sequence of culture media for the oocytes after injection; (2) modifications in the in vitro maturation system (IVM) through meiotic inhibitors such as roscovitine, and changes in the IVM time; (3) oocyte activation through injection of inositol triphosphate (InsP(3)) together with the sperm. In vitro matured oocytes were employed. All the ICSI experiments were performed with fresh ejaculated semen. Results showed that porcine ICSI zygotes give an improved proportion of two-cell embryos using the sequence IVF medium-embryo culture medium (NCSU-23) rather than transferring directly to NCSU-23. Pronuclear formation ability was not affected by prematuration, but a faster embryo development was observed in roscovitine treated oocytes. In relation to IVM times, oocytes matured for 36 h can achieve better fertilization percentages than oocytes matured for 44 h. These results were independent of the roscovitine treatment. Finally, no influence on embryo development was observed until the blastocyst stage with the use of the InsP(3) as an exogenous activating factor.  相似文献   

19.
The aim of this study was to evaluate embryo development of prepubertal goat oocytes fertilised by ICSI according to their diameter. Three experiments were carried out to achieve this objective. In all experiments, oocytes were matured in TCM199 supplemented with hormones, cysteamine and serum for 27 h at 38.5 degrees C. In Experiment 1, we studied the nuclear stage of goat zygotes produced by conventional ICSI and IVF using 20 nM ionomycin plus 10 microM heparin as sperm treatment. A group of Sham-injected oocytes was used as control. Results showed differences in the percentage of 2 PN (zygotes with male and female pronuclei) between ICSI, IVF and Sham (40.9, 26.6 and 3.0%, respectively; P<0.05). In Experiment 2, we evaluated the embryo development of prepubertal goat oocytes produced by ICSI and IVF after 192 h of culture in SOF medium. The percentage of morulae plus blastocysts obtained was higher in the ICSI than in the IVF group (13.4 and 5.1%, respectively; P<0.05). In Experiment 3, IVM-oocytes were classified in four groups depending on their diameter (Group A: <110 microm; Group B: 110-125 microm; Group C: 125-135 microm; Group D: >135 microm), fertilised by ICSI and cultured for 192 h. Results showed a positive correlation between oocyte diameter and embryo development (morulae+blastocysts: Group A: 0%; Group B: 6.2%; Group C: 46.4% and Group D: 33.3%). In conclusion, sperm treatment with ionomycin plus heparin using the conventional ICSI protocol improved fertilisation rates in comparison to IVF. Oocytes smaller than 125 microm were unable to develop up to blastocyst stage.  相似文献   

20.
Chromatin and microtubule configurations during the first cell cycle of bovine zygotes were analyzed by DNA staining and microtubule immunolocalization using an IVM/IVF system and oocytes matured and fertilized in vivo, in order to investigate the origin of the active centrosome and to characterize the nuclear and the cytoplasmic changes following bovine fertilization. Our results suggest that the paternal centrosome is active during early zygotic development, forming a conspicuous sperm aster soon after fertilization. We also report that polyspermy in bovine eggs, leads to the formation of numerous sperm asters with different degrees of association with the chromatin. The maternal structures in both monospermic and polyspermic zygotes can be lost or degenerate. Consequently, these cells may resume the first cell cycle as androgenotes, very often with several types of mitotic activity taking place in different regions of the cell cytoplasm at the same time. As indicated by a comparison of monospermic and polyspermic fertilization rates to rates of development, it is possible that some androgenetic embryos cleave and develop to the blastocyst stage. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号