首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The influence of epidermal growth factor (EGF) on the ability of murine embryonic palate mesenchymal (MEPM) cells to be stimulated to synthesize cAMP and prostaglandins was investigated. Preincubation of MEPM cells with EGF enhanced, in a dose-dependent fashion, (1) the responsiveness of MEPM cells to prostaglandin E1-induced elevation of intracellular levels of cAMP, and (2) the responsiveness of cells to calcium ionophore (A23187) and melittin-induced synthesis of prostaglandins E2 and F2 alpha. Hormonal responsiveness of MEPM cells to EGF, prostaglandins and cAMP has been implicated as being involved in controlling various aspects of normal oro-facial development. We show here that EGF can potentiate hormonal responsiveness of these cells and thus allows consideration of EGF as a factor which may modulate hormonally regulated craniofacial growth and differentiation.  相似文献   

3.
The transforming growth factor-beta (TGFbeta) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGFbeta on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGFbeta action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGFbeta. In the current study, elements of the Smad component of the TGFbeta intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGFbeta1, TGFbeta2, and TGFbeta3 was demonstrated. TGFbeta-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGFbeta-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGFbeta signaling system in cells of the developing murine palate.  相似文献   

4.
Temporally and quantitatively coordinated synthesis of cyclic adenosine monophosphate appears to be critical for normal development of the mammalian secondary palate. Calmodulin has been implicated as being involved in mediating the activity of a number of fundamental calcium-regulated intracellular enzyme systems including phosphodiesterases, adenylate cyclase, and a variety of kinases, all of which may regulate or be regulated by intracellular cAMP. Calmodulin levels were thus quantified, and endogenous calmodulin was immunolocalized in developing palatal tissue in vivo and in embryonic palatal mesenchymal cells in vitro. Endogenous palatal calmodulin levels, determined by radioimmunoassay, showed little variation during the period of murine palatal ontogenesis and averaged 0.23 ng/micrograms protein. Murine palate mesenchymal cells in monolayer, either in logarithmic growth or at confluency, contained similar levels of calmodulin. In palate mesenchymal cells in primary culture, specific anti-calmodulin staining was confined to the cell cytoplasm and was concentrated in the perinuclear region. Since immunostaining for calmodulin appeared to be associated with discrete cytoplasmic filaments, distribution of actin and tubulin were investigated. Immunostaining for tubulin in these cells was also localized to the perinuclear region, while immunolocalization of actin showed staining patterns, reflective of stress fibers, which were quite different from those seen for calmodulin. Immunostaining was seen in vivo in all regions of the palatal epithelium with superficial peridermal cells staining most intensely. Specific immunostaining was also evident in palatal mesenchyme, where a pericellular distribution was seen. Staining patterns were similar throughout the period of palatal ontogeny. In addition, a sharply defined localization of calmodulin to cartilagenous extracellular matrix was noted. This study provides a useful initial approach toward understanding the role calmodulin may play in embryonic orofacial development.  相似文献   

5.
The central role of TGF-β in the development of the embryonic palate has been well characterized. TGF-β inhibits mesenchymal cell proliferation, induces medial edge epithelial cell differentiation, and modulates the expression of extracellular matrix proteins as well as the proteases that act upon them. Mechanisms by which TGF-β expression itself is regulated are less well understood. Glucocorticoids are recognized in several cellular systems as able to regulate the expression of TGF-β. This study was therefore designed to examine whether glucocorticoids affect the expression of TGF-β isoforms in embryonic palatal cells. Based on flow cytometric analysis and viability determination, confluent primary cultures of mouse embryonic palate mesenchymal (MEPM) cells exposed to up to 10−6 M dexamethasone (dex) exhibited no signs of cytotoxicity after 24 hours of exposure. Northern blot analyses revealed that dexamethasone reduced steady-state mRNA levels of TGF-β3 in a dose-dependent manner as early as 4 hours after treatment but had little effect on TGF-β1 and TGF-β2 expression up to 24 hours of dex exposure. Dex also reduced the synthesis of both latent and mature forms of TGF-β protein by approximately four-fold as determined by the mink lung epithelial cell growth inhibition bioassay. Assessment of the ratio of mature to latent protein found in conditioned medium of control compared to dex-treated cultures indicated that dexamethasone may reduce the activation of latent TGF-β to mature biologically active TGF-β. Dexamethasone inhibited the proliferation of MEPM cells despite the down-regulation of TGF-β suggesting that dex-induced growth inhibition of MEPM cells is not mediated by TGF-β. These data suggest that dex modulates TGF-β signaling pathways directly by down-regulating TGF-β expression and possibly indirectly by altering the availability of mature TGF-β necessary to exert its biological effects in the developing palate. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Catecholamine modulation of embryonic palate mesenchymal cell DNA synthesis   总被引:1,自引:0,他引:1  
Development of the mammalian embryonic palate depends on the precise temporal and spatial regulation of growth. The factors and mechanisms underlying differential growth patterns in the palate remain elusive. Utilizing quiescent populations of murine embryonic palate mesenchymal (MEPM) cells in vitro, we have begun to investigate hormonal regulation of palatal cell proliferation. MEPM cells in culture were rendered quiescent by 48 hr serum deprivation and were subsequently released from growth arrest by readdition of medium containing 10% (v/v) serum. The progression of cells into S-phase of the cell cycle was monitored by autoradiographic analysis of tritiated thymidine incorporation. Palate mesenchymal cell entry into S-phase was preceded by a 6- to 8-hr prereplicative lag period, after which time DNA synthesis increased and cells reached a maximum labeling index by 22 hr. Addition of 10 microM isoproterenol to cell cultures at the time of release from growth arrest lengthened the prereplicative lag period and delayed cellular entry into S-phase by an additional 2 to 4 hr. The rate of cellular progression through S-phase remained unaltered. The inhibitory effect of isoproterenol on the initiation of MEPM cell DNA synthesis was abolished by pretreatment of cells with propranolol at a concentration (100 microM) that prevented isoproterenol-induced elevations of cAMP. Addition of PGE2 to cell cultures, at a concentration that markedly stimulates cAMP formation, mimicked the inhibitory effect of isoproterenol on cellular progression into S-phase. These findings demonstrate the ability of the beta-adrenergic catecholamine isoproterenol to modulate MEPM cell proliferation in vitro via a receptor-mediated mechanism and raise the possibility that the delayed initiation of DNA synthesis in these cells is a cAMP-dependent phenomenon.  相似文献   

7.
Ethanol affected the ability of murine embryonic palate mesenchymal (MEPM) cells to produce cAMP in response to hormone treatment. Acute exposure to ethanol resulted in an increase in hormone-stimulated cAMP levels, while chronic ethanol treatment led to decreased sensitivity to hormone. Forskolin-stimulated cAMP levels were decreased by both acute and chronic ethanol treatment, while the cells' response to cholera toxin was unchanged by ethanol treatment. The lack of sensitivity of the cholera toxin response to ethanol suggests that, in contrast to what has been observed in other systems, ethanol does not affect the production or activity of G alpha s in MEPM cells. These results suggest a possible explanation for the molecular basis for the craniofacial abnormalities observed in the fetal alcohol syndrome.  相似文献   

8.
The effect of retinoic acid (RA) on TGF-β mRNA expression and protein production in murine embryonic palate mesenchymal (MEPM) cells was examined by Northern blotting and TGF-β bioassay in association with TGF-β isoform-specific neutralizing antibodies. Heat or acid activation was used to distinguish between latent and active TGF-β protein released into the culture medium. RA had little or no effect on TGF-β1 mRNA expression and protein production. In contrast, RA increased TGF-β2 and β3 protein released into the culture medium, the protein being mostly in an inactive or latent form. The amount of active TGF-β released was increased relative to the total increase in TGF-β released, suggesting that RA treatment stimulated activation of latent TGF-β. RA also increased TGF-β2 mRNA expression; we have previously shown that RA upregulates TGF-β3 mRNA in these cells. RA and TGF-β individually inhibited 3H-thymidine incorporation into MEPM cell DNA, while, when administered simultaneously, they inhibited proliferative activity to a greater extent. Heat- or acid-activated conditioned medium (CM) from MEPM cells treated with RA was able to inhibit 3H-thymidine incorporation into MEPM cell DNA to an extent greater than seen with RA treatment alone. Coincubation of heat-activated CM from RA-treated MEPM cells with pan-specific or TGF-β2 or β3-specific neutralizing antibodies partially relieved the inhibitory effect on 3H-thymidine incorporation, suggesting that this proliferative response was due to RA-induced TGF-β. Simultaneous treatment with RA and TGF-β also stimulated gycosaminoglycan (GAG) synthesis to an extent greater than that seen with TGF-β treatment alone, this despite the ability of RA to inhibit GAG synthesis. These data demonstrate a role for RA and RA-induced TGF-β in the regulation of palate cell proliferation and GAG synthesis and suggest a role for TGF-β in retinoid-induced cleft palate. J. Cell. Physiol. 177:36–46, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
BACKGROUND: Platelet-derived growth factor C (PDGF-C) was recently identified as a member of the PDGF ligand family. Some observation suggests that PDGF-C could play an important role in palatogenesis highlighted by the Pdgfc(-/-) mouse with cleft palate, which led us to examine the mechanism of PDGF-C signaling in palatogenesis. It is well known that retinoic acid (RA) is a teratogen that can effectively induce cleft palate in the mouse. Due to the critical roles of PDGF-C and RA in cleft palate, the link between cleft palate induced by RA and loss of PDGF-C was investigated. METHODS: Retarded mesenchymal proliferation is an important cause for cleft palate. To clarify the mechanism of PDGF-C in palatogenesis, we evaluated the effects of PDGF-C and anti-PDGF-C neutralizing antibody on proliferation activity in mouse embryonic palatal mesenchymal (MEPM) cells. RESULTS: Briefly, our results show PDGF-C promotes proliferation, anti-PDGF-C antibody inhibits it in MEPM cells, and RA downregulates the PDGF-C expression both at the mRNA and protein levels. CONCLUSIONS: These demonstrate that PDGF-C is a potent mitogen for MEPM cells, implying that inactivated PDGF-C by gene-targeting or reduced PDGF-C by RA may both cause inhibition of proliferation in palatal shelves, which might account for the pathogenesis of cleft palate in Pdgfc(-/-) mouse or RA-treated mouse. In conclusion, our results suggest that PDGF-C signaling is a new mechanism of cleft palate induced by RA.  相似文献   

10.
BACKGROUND: The mycotoxin, secalonic acid D (SAD), a known animal and potential human cleft palate (CP)-inducing agent, is produced by Pencillium oxalicum in corn. SAD selectively inhibits proliferation of murine embryonic palatal mesenchymal (MEPM) cells leading to a reduction in cell numbers. These effects can explain the reduction in shelf size and the resulting CP seen in the offspring of SAD-exposed mice. Ability of SAD to inhibit proliferation as well as to block the progression of cells from G1- to S-phase of the cell-cycle were also shown in the human embryonic palatal mesenchymal (HEPM) cells suggesting the potential CP-inducing effect of SAD in human beings METHODS: Gestation day (GD) 12 mouse embryos and HEPM cells were used to test the hypothesis that the cell-cycle block induced by SAD results from a disruption of stage-specific regulatory components both in vivo and in vitro. The effects of SAD on the activity of various cyclin dependent kinases (CDK) and on the levels of various positive (cyclins and CDK) and negative (CDK inhibitors p15, 16, 18, 19, 21, 27, 57) cell-cycle regulators were assessed by performing kinase assays and immunoblots, respectively. RESULTS: In the murine embryonic palates, SAD specifically inhibited G1/S-phase-specific CDK2 activity, reduced the level of cyclin E and tended to increase the level of the CIP/kip CDK inhibitor, p21. In the HEPM cell cultures, exposure to IC50 of SAD significantly affected all of the above targets. In addition, a reduction in the levels/activity of CDK 4/6, a reduction in the levels of cyclins D1, D2, D3, E, A, and all INK4 family proteins, and an increase in the level of the CIP/kip CDK inhibitor, p57, were also seen. CONCLUSIONS: These results suggest that the S-phase-specific cell-cycle proteins CDK2, cyclin E and possibly p21 are the common targets of SAD in murine palatal shelves in vivo and in human embryonic palatal mesenchymal cells in vitro and may be relevant to the pathogenesis of SAD-induced CP.  相似文献   

11.
Cleft palate is one of the most common birth defects. Both environmental and genetic factors are involved in this disorder. Here, we investigated the function of Wnt10a in proliferation and apoptosis of mouse embryonic palatal mesenchymal (MEPM) cells. Expression of Wnt10a was down-regulated at both the mRNA and protein levels in transfected MEPM cells containing Wnt10a-specific small hairpin RNA (shRNA) plasmid. Down-regulation of Wnt10a inhibited cell proliferation and induced cell cycle arrest in the S phase in MEPM cells. Moreover, apoptosis was significantly increased in MEPM cells of Wnt10a gene silencing. Finally, the expression of β-catenin was markedly reduced in MEPM cells transfected with shRNA plasmid, indicating that the canonical Wnt/β-catenin signaling pathway was involved in the alterations of cell proliferation and apoptosis induced by Wnt10a knockdown. Thus, our findings reveal that Wnt10a regulates proliferation and apoptosis of MEPM cells at least partially through the canonical Wnt/β-catenin signaling pathway.  相似文献   

12.
Msx-1 gene expression and regulation in embryonic palatal tissue   总被引:2,自引:0,他引:2  
Summary The palatal cleft seen in Msx-1 knock-out mice suggests a role for this gene in normal palate development. The cleft is presumed secondary to tooth and jaw malformations, since in situ hybridization suggests that Msx-1 mRNA is not highly expressed in developing palatal tissue. In this study we demonstrate, by Northern blot analysis, the expression of Msx-1, but not Msx-2, in the developing palate and in primary cultures of murine embryonic palate mesenchymal cells. Furthermore, we propose a role for Msx-1 in retinoic acid-induced cleft palate, since retinoic acid inhibits Msx-1 mRNA expression in palate mesenchymal cells. We also demonstrate that transforming growth factor beta inhibits Msx-1 mRNA expression in palate mesenchymal cells, with retinoic acid and transforming growth factor beta acting synergistically when added simultaneously to these cells. These data suggest a mechanistic interaction between retinoic acid, transforming growth factor beta, and Msx-1 in the etiology of retinoic acid-induced cleft palate.  相似文献   

13.
We have previously described bi-directional cross-talk between the retinoic acid (RA) and transforming growth factor beta (TGF-beta) signal transduction pathways in primary cultures of murine embryonic palate mesenchymal (MEPM) cells. In this paper we identify interactions between the TGF-beta1, cyclic adenosine 3', 5'-monophosphate (cAMP) and RA signaling systems. TGF-beta1 and forskolin, an activator of the cAMP pathway, inhibited RA-induced expression of RAR-beta mRNA in MEPM cells, though only TGF-beta1 inhibited RA-induced RAR-beta protein expression. Forskolin, but not TGF-beta1, abrogated RA-induced expression of a reporter construct containing 900 base pair (bp) of the RAR-beta gene promoter, transfected into MEPM cells, suggesting that this portion of the promoter contains the forskolin-responsive, but not the TGF-beta-responsive, element. Thus, a putative TGF-beta Inhibitory Element (TIE) adjacent to the retinoic acid response element (RARE) in the RAR-beta promoter is either non-functional, or requires promoter/enhancer elements not present in the promoter construct used in these experiments. These studies further clarify the complex interactions among signal transduction pathways in the regulation of retinoic acid receptor gene expression.  相似文献   

14.
维甲酸(RA)是一种能够诱导腭裂发生的致畸物.研究显示γ-氨基丁酸(GABA)在腭板的发育过程中发挥重要作用.而GABA是否参与了RA诱导的腭裂发生还不清楚.本研究以小鼠胚胎腭板间充质细胞(MEPM)为研究对象,观察全反式维甲酸(atRA)(0.2、0.67、2.0和 6.7 μmol/L)对MEPM细胞增殖和凋亡的影响,并探讨GABA信号通路在其中的可能作用.结果显示,atRA(2.0 μmol/L和6.7 μmol/L)显著性抑制了MEPM的增殖,并促进了细胞凋亡.atRA(0.67、2.0和 6.7 μmol/L)显著性降低了GABA合成的关键酶谷氨酸脱羧酶(GAD67)mRNA和蛋白质的表达,但对γ-氨基丁酸A型受体-β3(GABAAR-β3)mRNA和蛋白质的表达没有影响.1.0 μmol/L的GABA逆转了atRA(6.7 μmol/L)对MEPM细胞增殖和凋亡的影响.以上结果表明,atRA通过下调GAD67的表达,减少GABA的产生,抑制MEPM的增殖和促进MEPM的凋亡,从而可能影响腭板的发育,诱导腭裂形成.  相似文献   

15.
Activation of the cAMP signaling pathway in lymphoid cells is known to inhibit cell proliferation of T and B cells as well as cytotoxicity of natural killer (NK) cells. In order to find suitable model systems to study cAMP-mediated processes, we have examined the expression of cAMP-dependent protein kinase (PKA), endogenous levels of cAMP, and cell proliferation in eight cell lines of B lineage origin, four cell lines of T lineage origin, and normal human B and T cells. We demonstrated that the expression of mRNA and protein for one of the regulatory (R) subunits of PKA (RIα) was present in all the cells investigated, in contrast to the other R subunits (RIβ, RIIα, and RIIβ). Furthermore, three T cell lines and one B cell line expressed only RIα and C, implying these cells to contain solely PKA type I. Moreover, for the RI subunit, we observed an apparent reciprocal relationship between levels of mRNA and protein. Generally, RIα protein was low in cell lines where mRNA was elevated and vice versa. This was not the case for the RII subunits, where high levels of mRNA were associated with elevated levels of protein. Interestingly, we demonstrated an inverse correlation between levels of endogenous cAMP and cell growth as determined by [3H]-thymidine incorporation and cell-doubling rate (P < 0.05). Taken together, our results demonstrate great differences in PKA isozyme composition, which should be taken into consideration when using lymphoid cell lines as model system for cAMP/PKA effects in normal lymphocytes. J. Cell. Physiol. 177:85–93, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
17.
Development of the mammalian secondary palate requires proper production of the extracellular matrix, particularly glycosaminoglycans (GAGs) and collagen. Endogenous factors that regulate the metabolism of these molecules are largely undefined. A candidate for a locally derived molecule would be transforming growth factor beta 1 (TGF beta 1) by virtue of its potency as a modulator of extracellular matrix metabolism by several cell lines. We have thus attempted to assign a regulatory role for TGF beta 1 in modulation of GAG production and degradation by mesenchymal cells of the murine embryonic palate (MEPM). Treatment with TGF beta 1 or TGF beta 2, but not IGF-II, resulted in a stimulation of total GAG synthesis. Furthermore, cells treated with both TGF beta 1 and TGF alpha showed a synergistic increase in GAG synthesis if pretreated with TGF beta 1 but not TGF alpha. Simultaneous stimulation with TGF beta 1 and TGF beta 2 did not elicit a synergistic response. These studies demonstrate the ability of TGF beta, synthesized by embryonic palatal cells, to specifically stimulate GAG synthesis by MEPM cells. Other growth factors present in the developing craniofacial region may also modulate TGF beta-induced GAG synthesis, a biosynthetic process critical to normal development of the embryonic palate.  相似文献   

18.
Mouse embryo palate mesenchyme (MEPM) cells are able to synthesize and respond to prostaglandins. However, mechanisms that regulate their synthesis in these cells are not known. Cyclic adenosine 3',5' monophosphate (cAMP) has been implicated as being involved in differentiation of the palate, accumulates in MEPM cells in response to stimulation with selected prostaglandins, and has been found to modulate synthesis of prostaglandins by other cells and tissues. Therefore, we have investigated whether cAMP modulates synthesis of prostaglandins by MEPM mesenchyme cells and partially characterized the metabolic site at which such modulation occurs. We found that treatment of MEPM cells with various agents to stimulate a seven- to 100-fold increase in intracellular levels of cAMP inhibited release of various prostaglandins by at least 50%. Similarly, elevation of intracellular levels of cAMP inhibited release of radiolabeled arachidonic acid from membrane phospholipids by as much as 27%. The inhibitory effects of cAMP on release of prostaglandins from MEPM cells could be almost completely overcome by the addition of arachidonic acid to the culture medium. We interpret these data to mean that there is a regulatory cycle in MEPM cells in which intracellular levels of cAMP regulates synthesis of prostaglandins and prostaglandins regulate accumulation of cAMP and regulation of synthesis of prostaglandins by cAMP is predominantly through inhibition of a phospholipase.  相似文献   

19.
J Jones  R M Greene 《Life sciences》1988,42(7):841-851
The objective of this study was to determine the responsiveness of isolated embryonic murine and avian epithelial and mesenchymal tissue to PGE2 stimulation. On days 12 and 14 of gestation, murine palatal epithelium responded to PGE2 (10(-5) M) with 3.5 and 4.0 fold elevations in intracellular cAMP, respectively. On day 13 of gestation, murine palatal epithelium was responsive to forskolin, PGE1 and isoproterenol as indicated by the accumulation of cAMP, but unresponsive to PGE2 and PGF2 alpha less than treatment. Avian palatal epithelium and mesenchyme, developmental stages 31 to 34, as well as murine palatal mesenchyme on day 13 of gestation responded to PGE2 treatment with dose-dependent elevations in intracellular cAMP. Of importance, is the lack of responsiveness of murine palatal epithelium to PGE2 treatment on day 13 of gestation. This corresponds to the time of murine palatal medial edge epithelial differentiation. Lack of a PGE2 response may effect, initiate or occur as the result of murine medial edge epithelial differentiation.  相似文献   

20.
Certain hormonal primary messengers identified in the mammalian palate during its ontogeny transmit information to the interior of the cell via transmembrane signaling systems that control the production of the secondary messenger cyclic adenosine monophosphate. The singular role of intracellular cyclic AMP is to activate cAMP-dependent protein kinases (cAMP-dPK). cAMP-dPK were thus identified and characterized in the developing murine embryonic palate. Incubation of cytosolic fractions of embryonic palatal tissue with cAMP resulted in a dose-dependent increase in the cAMP-dPK activity ratio. A transient elevation of basal cAMP-dPK was seen during the period of palatal ontogeny that corresponded temporally with a previously demonstrated transient elevation of palatal basal cAMP levels. Fractions of embryonic palatal tissue cytosols derived by diethylaminoethyl (DEAE)-Sephacel chromatography were analyzed for phosphotransferase activity and for [3H]-cAMP binding to the regulatory (R) subunits of cAMP-dPK. Such analyses revealed two peaks of activity on day 13 of gestation. Based on the salt concentration at which the material in these peaks eluted from DEAE, its ability to cochromatograph with authentic cAMP-dPK isozymes, its molecular weight as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis, and the ability of the material to be photoaffinity labeled with [3H]-8-azidoadenosine 3',5' cyclic phosphate, types I and II cAMP-dPK were identified. Regulatory subunits of cAMP-dPK were characterized by the binding of [3H]-cAMP to cytosolic fractions of embryonic palatal tissue. Such binding was saturable (Bmax = 1,096 fmol/mg protein) and of high affinity (Kd = 7 nM). Only cAMP and cyclic guanosine monophosphate competed in a dose-related manner with [3H]-cAMP for binding to R subunits of cAMP-dPK. Adenosine, cTMP, and adenosine triphosphate, at doses up to 10(-4) M, did not compete for binding. Temporal analysis of binding data indicated that the number of binding sites transiently decreased during day 13 of gestation. Characterization of cAMP-dPK in tissue derived from the developing mammalian palate allows consideration of cAMP-dPK as a key regulatory enzyme capable of transducing hormonally elevated intracellular levels of cAMP into metabolic responses during orofacial ontogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号