首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Digestions of the GroES oligomer with trypsin, chymotrypsin and Glu-C protease from Staphylococcus aureus V8 (V8) have helped to locate three regions in the GroES sequence that are sensitive to limited proteolysis and have provided information of the GroES domains involved in monomer-monomer and GroEL interaction. The removal of the first 20 or 27 amino acids of the N-terminal region of each GroES monomer by trypsin or chymotrypsin respectively, abolish the oligomerization of the GroES complex and its binding to GroEL. The V8-treatment of GroES promotes the breakage of the peptide bond between Glu18 and Thr19 but not the liberation of the N-terminal fragment from the GroES oligomer, which is capable of forming with GroEL a complex active in protein folding. It is deduced from these results that the N-terminal region of the GroES monomer is involved in monomer-monomer interaction, providing experimental evidence that relates some biochemical properties of GroES with its three-dimensional structure at atomic resolution.  相似文献   

2.
Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.  相似文献   

3.
Two D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) folding intermediate subunits bind with chaperonin 60 (GroEL) to form a stable complex, which can no longer bind with additional GAPDH intermediate subunits, but does bind with one more lysozyme folding intermediate or one chaperonin 10 (GroES) molecule, suggesting that the two GAPDH subunits bind at one end of the GroEL molecule displaying a "half of the sites" binding profile. For lysozyme, GroEL binds with either one or two folding intermediates to form a stable 1:1 or 1:2 complex with one substrate on each end of the GroEL double ring for the latter. The 1:1 complex of GroEL.GroES binds with one lysozyme or one dimeric GAPDH folding intermediate to form a stable ternary complex. Both complexes of GroEL.lysozyme1 and GroEL.GAPDH2 bind with one GroES molecule only at the other end of the GroEL molecule forming a trans ternary complex. According to the stoichiometry of GroEL binding with the GAPDH folding intermediate and the formation of ternary complexes containing GroEL.GAPDH2, it is suggested that the folding intermediate of GAPDH binds, very likely in the dimeric form, with GroEL at one end only.  相似文献   

4.
The chaperonin GroEL contains two seven-subunit rings, and allosteric signals between them are required to complete the GroEL reaction cycle. For this reason SR1, a mutant of GroEL that forms only single rings, cannot function as a chaperone. Mutations in SR1 that restore chaperone function weaken its interaction with the cochaperonin GroES. We predicted that GroES mutants with reduced affinity for GroEL would also restore function to SR1. To test this, we mutated residues in GroES in and near its contact site with GroEL. Nearly half of the mutants showed partial function with SR1. Two mutants were confirmed to have reduced affinity for GroEL. Intriguingly, some GroES mutants were able to function with active single ring mutants of GroEL.  相似文献   

5.
The chaperonin GroEL binds to a large number of polypeptides, prevents their self-association, and mediates appropriate folding in a GroES and adenosine triphosphate-dependent manner. But how the GroEL molecule actually recognizes the polypeptide and what are the exact GroEL recognition sites in the substrates are still poorly understood. We have examined more than 50 in vivo substrates as well as well-characterized in vitro substrates, for their binding characteristics with GroEL. While addressing the issue, we have been driven by the basic concept that GroES, being the cochaperonin of GroEL, is the best-suited substrate for GroEL, as well as by the fact that polypeptide substrate and GroES occupy the same binding sites on the GroEL apical domain. GroES interacts with GroEL through selective hydrophobic residues present on its mobile loop region, and we have considered the group of residues on the GroES mobile loop as the key element in choosing a substrate for GroEL. Considering the hydrophobic region on the GroES mobile loop as the standard, we have attempted to identify the homologous region on the peptide sequences in the proteins of our interest. Polypeptides have been judged as potential GroEL substrates on the basis of the presence of the GroES mobile loop-like hydrophobic segments in their amino acid sequences. We have observed 1 or more GroES mobile loop-like hydrophobic patches in the peptide sequence of some of the proteins of our interest, and the hydropathy index of most of these patches also seems to be approximately close to that of the standard. It has been proposed that the presence of hydrophobic patches having substantial degree of hydropathy index as compared with the standard segment is a necessary condition for a peptide sequence to be recognized by GroEL molecules. We also observed that the overall hydrophobicity is also close to 30% in these substrates, although this is not the sufficient criterion for a polypeptide to be assigned as a substrate for GroEL. We found that the binding of aconitase, alpha-lactalbumin, and murine dihydrofolate reductase to GroEL falls in line with our present model and have also predicted the exact regions of their binding to GroEL. On the basis of our GroEL substrate prediction, we have presented a model for the binding of apo form of some proteins to GroEL and the eventual formation of the holo form. Our observation also reveals that in most of the cases, the GroES mobile loop-like hydrophobic patch is present in the unstructured region of the protein molecule, specifically in the loop or beta-sheeted region. The outcome of our study would be an essential feature in identifying a potential substrate for GroEL on the basis of the presence of 1 or more GroES mobile loop-like hydrophobic segments in the amino acid sequence of those polypeptides and their location in three-dimensional space.  相似文献   

6.
We have identified five structural rearrangements in GroEL induced by the ordered binding of ATP and GroES. The first discernable rearrangement (designated T --> R(1)) is a rapid, cooperative transition that appears not to be functionally communicated to the apical domain. In the second (R(1) --> R(2)) step, a state is formed that binds GroES weakly in a rapid, diffusion-limited process. However, a second optical signal, carried by a protein substrate bound to GroEL, responds neither to formation of the R(2) state nor to the binding of GroES. This result strongly implies that the substrate protein remains bound to the inner walls of the initially formed GroEL.GroES cavity, and is not yet displaced from its sites of interaction with GroEL. In the next rearrangement (R(2).GroES --> R(3).GroES) the strength of interaction between GroEL and GroES is greatly enhanced, and there is a large and coincident loss of fluorescence-signal intensity in the labeled protein substrate, indicating that there is either a displacement from its binding sites on GroEL or at least a significant change of environment. These results are consistent with a mechanism in which the shift in orientation of GroEL apical domains between that seen in the apo-protein and stable GroEL.GroES complexes is highly ordered, and transient conformational intermediates permit the association of GroES before the displacement of bound polypeptide. This ensures efficient encapsulation of the polypeptide within the GroEL central cavity underneath GroES.  相似文献   

7.
Preuss M  Miller AD 《FEBS letters》2000,466(1):75-79
The affinity of four short peptides for the Escherichia coli molecular chaperone GroEL was studied in the presence of the co-chaperone GroES and nucleotides. Our data show that binding of GroES to one ring enhances the interaction of the peptides with the opposite GroEL ring, a finding that was related to the structural readjustments in GroEL following GroES binding. We further report that the GroEL/GroES complex has a high affinity for peptides during ATP hydrolysis when protein substrates would undergo repeated cycles of assisted folding. Although we could not determine at which step(s) during the cycle our peptides interacted with GroEL, we propose that successive state changes in GroEL during ATP hydrolysis may create high affinity complexes and ensure maximum efficiency of the chaperone machinery under conditions of protein folding.  相似文献   

8.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

9.
Chaperonins GroEL and GroES: views from atomic force microscopy.   总被引:3,自引:1,他引:2       下载免费PDF全文
J Mou  S Sheng  R Ho    Z Shao 《Biophysical journal》1996,71(4):2213-2221
The Escherichia coli chaperonins, GroEL and GroES, as well as their complexes in the presence of a nonhydrolyzable nucleotide AMP-PNP, have been imaged with the atomic force microscope (AFM). We demonstrate that both GroEL and GroES that have been adsorbed to a mica surface can be resolved directly by the AFM in aqueous solution at room temperature. However, with glutaraldehyde fixation of already adsorbed molecules, the resolution of both GroEL and GroES was further improved, as all seven subunits were well resolved without any image processing. We also found that chemical fixation was necessary for the contact mode AFM to image GroEL/ES complexes, and in the AFM images. GroEL with GroES bound can be clearly distinguished from those without. The GroEL/ES complex was about 5 nm higher than GroEL alone, indicating a 2 nm upward movement of the apical domains of GroEL. Using a slightly larger probe force, unfixed GroEL could be dissected: the upper heptamer was removed to expose the contact surface of the two heptamers. These results clearly demonstrate the usefulness of cross-linking agents for the determination of molecular structures with the AFM. They also pave the way for using the AFM to study the structural basis for the function of GroE system and other molecular chaperones.  相似文献   

10.
The GroEL–GroES is an essential molecular chaperon system that assists protein folding in cell. Binding of various substrate proteins to GroEL is one of the key aspects in GroEL‐assisted protein folding. Small peptides may mimic segments of the substrate proteins in contact with GroEL and allow detailed structural analysis of the interactions. A model peptide SBP has been shown to bind to a region in GroEL that is important for binding of substrate proteins. Here, we investigated whether the observed GroEL–SBP interaction represented those of GroEL–substrate proteins, and whether SBP was able to mimic various aspects of substrate proteins in GroE‐assisted protein folding cycle. We found that SBP competed with substrate proteins, including α‐lactalbumin, rhodanese, and malate dehydrogenase, in binding to GroEL. SBP stimulated GroEL ATP hydrolysis rate in a manner similar to that of α‐lactalbumin. SBP did not prevent GroES from binding to GroEL, and GroES association reduced the ATPase rates of GroEL/SBP and GroEL/α‐lactalbumin to a comparable extent. Binding of both SBP and α‐lactalbumin to apo GroEL was dominated by hydrophobic interaction. Interestingly, association of α‐lactalbumin to GroEL/GroES was thermodynamically distinct from that to GroEL with reduced affinity and decreased contribution from hydrophobic interaction. However, SBP did not display such differential binding behaviors to apo GroEL and GroEL/GroES, likely due to the lack of a contiguous polypeptide chain that links all of the bound peptide fragments. Nevertheless, studies using peptides provide valuable information on the nature of GroEL–substrate protein interaction, which is central to understand the mechanism of GroEL‐assisted protein folding. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.  相似文献   

12.
The next step in our reductional analysis of GroEL was to study the activity of an isolated single seven-membered ring of the 14-mer. A known single-ring mutant, GroEL(SR1), contains four point mutations that prevent the formation of double-rings. That heptameric complex is functionally inactive because it is unable to release GroES. We found that the mutation E191G, which is responsible for the temperature sensitive (ts) Escherichia coli allele groEL44 and is located in the hinge region between the intermediate and apical domains of GroEL, appears to function by weakening the binding of GroES, without destabilizing the overall structure of GroEL44 mutant. We introduced, therefore, the mutation E191G into GroEL(SR1) in order to generate a single-ring mutant that may have weaker binding of GroES and hence be active. The new single-ring mutant, GroEL(SR44), was indeed effective in refolding both heat and dithiothreitol-denatured mitochondrial malate dehydrogenase with great efficiency. Further, unlike all smaller constructs of GroEL, the expression of GroEL(SR44) in E. coli that contained no endogenous GroEL restored biological viability, but not as efficiently as does wild-type GroEL. We envisage the notional evolution of the structure and properties of GroEL. The minichaperone core acts as a primitive chaperone by providing a binding surface for denatured states that prevents their self-aggregation. The assembly of seven minichaperones into a ring then enhances substrate binding by introducing avidity. The acquisition of binding sites for ATP then allows the modulation of substrate binding by introducing the allosteric mechanism that causes cycling between strong and weak binding sites. This is accompanied by the acquisition by the heptamer of the binding of GroES, which functions as a lid to the central cavity and competes for peptide binding sites. Finally, dimerization of the heptamer enhances its biological activity.  相似文献   

13.
The cylindrical chaperonin GroEL of E. coli and its ring-shaped cofactor GroES cooperate in mediating the ATP-dependent folding of a wide range of polypeptides in vivo and in vitro. By binding to the ends of the GroEL cylinder, GroES displaces GroEL-bound polypeptide into an enclosed folding cage, thereby preventing protein aggregation during folding. The dynamic interaction of GroEL and GroES is regulated by the GroEL ATPase and involves the formation of asymmetrical GroEL:GroES1 and symmetrical GroEL: GroES2 complexes. The proposed role of the symmetrical complex as a catalytic intermediate of the chaperonin mechanism has been controversial. It has also been suggested that the formation of GroEL:GroES2 complexes allows the folding of two polypeptide molecules per GroEL reaction cycle, one in each ring of GroEL. By making use of a procedure to stabilize chaperonin complexes by rapid crosslinking for subsequent analysis by native PAGE, we have quantified the occurrence of GroEL:GroES1 and GroEL:GroES2 complexes in active refolding reactions under a variety of conditions using mitochondrial malate dehydrogenase (mMDH) as a substrate. Our results show that the symmetrical complexes are neither required for chaperonin function nor does their presence significantly increase the rate of mMDH refolding. In contrast, chaperonin-assisted folding is strictly dependent on the formation of asymmetrical GroEL:GroES1 complexes. These findings support the view that GroEL:GroES2 complexes have no essential role in the chaperonin mechanism.  相似文献   

14.
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.  相似文献   

15.
Emerging evidence supports the ion channel mechanism for Alzheimer's disease pathophysiology wherein small β-amyloid (Aβ) oligomers insert into the cell membrane, forming toxic ion channels and destabilizing the cellular ionic homeostasis. Solid-state NMR-based data of amyloid oligomers in solution indicate that they consist of a double-layered β-sheets where each monomer folds into β-strand-turn-β-strand and the monomers are stacked atop each other. In the membrane, Aβ peptides are proposed to be β-type structures. Experimental structural data available from atomic force microscopy (AFM) imaging of Aβ oligomers in membranes reveal heterogeneous channel morphologies. Previously, we modeled the channels in a non-tilted organization, parallel with the cross-membrane normal. Here, we modeled a β-barrel-like organization. β-Barrels are common in transmembrane toxin pores, typically consisting of a monomeric chain forming a pore, organized in a single-layered β-sheet with antiparallel β-strands and a right-handed twist. Our explicit solvent molecular dynamics simulations of a range of channel sizes and polymorphic turns and comparisons of these with AFM image dimensions support a β-barrel channel organization. Different from the transmembrane β-barrels where the monomers are folded into a circular β-sheet with antiparallel β-strands stabilized by the connecting loops, these Aβ barrels consist of multimeric chains forming double β-sheets with parallel β-strands, where the strands of each monomer are connected by a turn. Although the Aβ barrels adopt the right-handed β-sheet twist, the barrels still break into heterogeneous, loosely attached subunits, in good agreement with AFM images and previous modeling. The subunits appear mobile, allowing unregulated, hence toxic, ion flux.  相似文献   

16.
The GroES binding site at the apical domain of GroEL, mostly consisting of hydrophobic residues, overlaps largely with the substrate polypeptide binding site. Essential contribution of hydrophobic interaction to the binding of both GroES and polypeptide was exemplified by the mutant GroEL(L237Q) which lost the ability to bind either of them. The binding site, however, contains three hydrophilic residues, E238, T261, and N265. For GroES binding, N265 is essential since GroEL(N265A) is unable to bind GroES. E238 contributes to rapid GroES binding to GroEL because GroEL(E238A) is extremely sluggish in GroES binding. Polypeptide binding was not impaired by any mutations of E238A, T261A, and N265A. Rather, these mutants, especially GroEL(N265A), showed stronger polypeptide binding affinity than wild-type GroEL. Thus, these hydrophilic residues have a dual role; they help GroES binding on one hand but attenuate polypeptide binding on the other hand.  相似文献   

17.
In the crystal structure of the native GroEL.GroES.substrate protein complex from Thermus thermophilus, one GroEL subunit makes contact with two GroES subunits. One contact is through the H-I helices, and the other is through a novel GXXLE region. The side chain of Leu, in the GXXLE region, forms a hydrophobic cluster with residues of the H helix (Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Masui, R., Murai, N., Yoshida, M., Taguchi, H., and Iwata, S. (2004) Structure (Camb.) 12, 1471-1480). Here, we investigated the functional role of Leu in the GXXLE region, using Escherichia coli GroEL. The results are as follows: (i) cross-linking between introduced cysteines confirmed that the GXXLE region in the E. coli GroEL.GroES complex is also in contact with GroES; (ii) when Leu was replaced by Lys (GroEL(L309K)) or other charged residues, chaperone activity was largely lost; (iii) the GroEL(L309K).substrate complex failed to bind GroES to produce a stable GroEL(L309K).GroES.substrate complex, whereas free GroEL(L309K) bound GroES normally; (iv) the GroEL(L309K).GroES.substrate complex was stabilized with BeF(x), but the substrate protein in the complex was readily digested by protease, indicating that it was not properly encapsulated into the internal cavity of the complex. Thus, conformational communication between the two GroES contact sites, the H helix and the GXXLE region (through Leu(309)), appears to play a critical role in encapsulation of the substrate.  相似文献   

18.
Two new 2-D crystal forms of the Escherichia coli chaperone GroEL (cpn60) 2 × 7-mer have been produced using the negative staining-carbon film (NS-CF) technique. These 2-D crystals, which contain the cylindrical GroEL in side-on and end-on orientations, both possess p21 symmetry, with two molecules in the respective unit cells. The crystallographically averaged images correlate well with those obtained by other authors from single particle analysis of GroEL and our own previous crystallographic analysis. 2-D crystallization of the smaller chaperone GroES (cpn10) 7-mer has also been achieved using the NS-CF technique. Crystallographically averaged images of GroES single particle images indicate considerable variation in molecular shape, which is most likely due to varying molecular orientation on the carbon support film. The quaternary structure of GroES does, nevertheless, approximate to a ring-like shape. The complex formed by GroEL and GroES in the presence of ATP at room temperature has been shown to possess a symmetrical hollow ellipsoidal conformation. This symmetrical complex forms in the presence of a 2:1 or greater molar ratio of GroES:GroEL. At lower molar ratios linear chains of GroEL form, apparently linked by GroES in a 1:1 manner, which provide supportive evidence for the ability of both ends of the GroEL cylinder to interact with GroES. The apparent discrepancy between our data and that of other groups who have described an asymmetrical "bullet-shaped" (holo-chaperone) GroEL/ES complex is discussed in detail.  相似文献   

19.
Small-angle neutron scattering and contrast variation were used to study the solution structure of GroEL and GroEL/GroES chaperonins complexed with a nonnative variant of the polypeptide substrate, subtilisin (PJ9). The subtilisin was 86% deuterated (dPJ9) so that it contrasted sufficiently with the chaperonin, allowing the contrast variation technique to be used to separate the scattering from the two components bound in the complex. Both the native double-ring GroEL and a single-ring mutant were used with dPJ9 bound in a 1:1 stoichiometry per GroEL toroid. This allowed both the position and the shape of dPJ9 in the GroEL/dPJ9 complexes to be determined. A single-ring GroEL/GroES variant complexed with one dPJ9 molecule was used to study the structural changes of dPJ9 in GroEL/GroES/dPJ9 complexes formed with ADP and with ATP. It was found that both the shape and the position of the bound dPJ9 in the GroEL/GroES/dPJ9 complex with ADP were the same as those in the GroEL/dPJ9 complex. However, dPJ9 assumed a more symmetric shape when bound in the GroEL/GroES/dPJ9 complex with ATP. This important observation reflects the relative ability of ATP to promote refolding of protein substrates relative to that of ADP.  相似文献   

20.
The guanidine-hydrochloride (Gdn-HCl) induced unfolding and refolding characteristics of the co-chaperonin GroES from Escherichia coli, a homoheptamer of subunit molecular mass 10,000 Da, were studied by using intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate (ANS) binding, and size-exclusion HPLC. When monitored by tyrosine fluorescence, the unfolding reaction of GroES consisted of a single transition, with a transition midpoint at around 1.0 M Gdn-HCl. Interestingly, however, ANS binding and size-exclusion HPLC experiments strongly suggested the existence of an intermediate state in the transition. In order to confirm the existence of an intermediate state between the native heptameric and unfolded monomeric states, a tryptophan residue was introduced into the interface of GroES subunits as a fluorescent probe. The unfolding reaction of GroES I48W as monitored by tryptophyl fluorescence showed a single transition curve with a transition midpoint at 0.5 M Gdn-HCl. This unfolding transition curve as well as the refolding kinetics were dependent on the concentration of GroES protein. CD spectrum and size-exclusion HPLC experiments demonstrated that the intermediates assumed a partially folded conformation at around 0.5 M Gdn-HCl. The refolding of GroES protein from 3 M Gdn-HCl was probed functionally by measuring the extent of inhibition of GroEL ATPase activity and the enhancement of lactate dehydrogenase refolding yields in the presence of GroEL and ADP. These results clearly demonstrated that the GroES heptamer first dissociated to monomers and then unfolded completely upon increasing the concentration of Gdn-HCl, and that both transitions were reversible. From the thermodynamic analysis of the dissociation reaction, it was found that the partially folded monomer was only marginally stable and that the stability of GroES protein is governed mostly by the association of the subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号