首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The teeth of white-spotted bamboo sharks (Chiloscyllium plagiosum) are used to clutch soft-bodied prey and crush hard prey; however, the dual function is not evident from tooth morphology alone. Teeth exhibit characteristics that are in agreement with a clutching-type tooth morphology that is well suited for grasping and holding soft-bodied prey, but not for crushing hard prey. The dual role of this single tooth morphology is facilitated by features of the dental ligament and jaw joint. Tooth attachment is flexible and elastic, allowing movement in both sagittal and frontal planes. During prey capture spike-like tooth cusps pierce the flesh of soft prey, thereby preventing escape. When processing prey harder than the teeth can pierce the teeth passively depress, rotating inward towards the oral cavity such that the broader labial faces of the teeth are nearly parallel to the surface of the jaws and form a crushing surface. Movement into the depressed position increases the tooth surface area contacting prey and decreases the total stress applied to the tooth, thereby decreasing the risk of structural failure. This action is aided by a jaw joint that is ventrally offset from the occlusal planes of the jaws. The offset joint position allows many teeth to contact prey simultaneously and orients force vectors at contact points between the jaws and prey in a manner that shears or rolls prey between the jaws during a bite, thus, aiding in processing while reducing forward slip of hard prey from the mouth. Together the teeth, dental ligament, and jaws form an integrated system that may be beneficial to the feeding ecology of C. plagiosum, allowing for a diet that includes prey of varying hardness and elusiveness.  相似文献   

2.
The recent reexamination of a tooth‐whorl fossil of Helicoprion containing intact jaws shows that the symphyseal tooth‐whorl occupies the entire length of Meckel's cartilage. Here, we use the morphology of the jaws and tooth‐whorl to reconstruct the jaw musculature and develop a biomechanical model of the feeding mechanism in these early Permian predators. The jaw muscles may have generated large bite‐forces; however, the mechanics of the jaws and whorl suggest that Helicoprion was better equipped for feeding on soft‐bodied prey. Hard shelled prey would tend to slip anteriorly from the closing jaws due to the curvature of the tooth‐whorl, lack of cuspate teeth on the palatoquadrate (PQ), and resistance of the prey. When feeding on soft‐bodied prey, deformation of the prey traps prey tissue between the two halves of the PQ and the whorl. The curvature of the tooth‐whorl and position of the exposed teeth relative to the jaw joint results in multiple tooth functions from anterior to posterior tooth that aid in feeding on soft‐bodied prey. Posterior teeth cut and push prey deeper into the oral cavity, while middle teeth pierce and cut, and anterior teeth hook and drag more of the prey into the mouth. Furthermore, the anterior‐posterior edges of the teeth facilitate prey cutting with jaw closure and jaw depression. The paths traveled by each tooth during jaw depression are reminiscent of curved pathways used with slashing weaponry such as swords and knifes. Thus, the jaws and tooth‐whorl may have formed a multifunctional tool for capturing, processing, and transporting prey by cyclic opening and closing of the lower jaw in a sawing fashion. J. Morphol. 276:47–64, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
The great barracuda, Sphyraena barracuda, is a voracious marine predator that captures fish with a swift ram feeding strike. While aspects of its ram feeding kinematics have been examined, an unexamined aspect of their feeding strategy is the bite mechanism used to process prey. Barracuda can attack fish larger than the gape of their jaws, and in order to swallow large prey, can sever their prey into pieces with powerful jaws replete with sharp cutting teeth. Our study examines the functional morphology and biomechanics of 'ram-biting' behavior in great barracuda where the posterior portions of the oral jaws are used to slice through prey. Using fresh fish and preserved museum specimens, we examined the jaw mechanism of an ontogenetic series of barracuda ranging from 20 g to 8.2 kg. Jaw functional morphology was described from dissections of fresh specimens and bite mechanics were determined from jaw morphometrics using the software MandibLever (v3.2). High-speed video of barracuda biting (1500 framess(-1)) revealed that prey are impacted at the corner of the mouth during capture in an orthogonal position where rapid repeated bites and short lateral headshakes result in cutting the prey in two. Predicted dynamic force output of the lower jaw nearly doubles from the tip to the corner of the mouth reaching as high as 58 N in large individuals. A robust palatine bone embedded with large dagger-like teeth opposes the mandible at the rear of the jaws providing for a scissor-like bite capable of shearing through the flesh and bone of its prey.  相似文献   

4.
Deformed teeth are found as rare components of the dentitions of both modern and fossil chondrichthians. Tooth deformities occur as bent or twisted tooth crowns, missing or misshaped cusps, atypical protuberances, perforations, and abnormal root structures. Deformed tooth files consisting of unusually overlapped or small teeth, or teeth misaligned in the jaw also occur in modern forms, but deformed tooth files generally are not recognizable in fossils due to post-mortem dissociation of teeth and jaws. A survey of 200 modern lamniform and carcharhiniform sharks as well as literature sources indicate that such deformities are produced by feeding-related injury to the tooth-forming tissue of the jaws, particularly by impaction of chondrichthian and teleost fin and tail spines. Tooth counts for several late Cretaceous genera, based on material recovered from coastal plain sites from New Jersey to Alabama, suggest that the frequency of occurrence of deformed teeth in a species varies from about 0.015% in Squalicorax kaupi to about 0.36% in Paranomotodon sp. Tooth counts for modern lamniform and carcharhiniform sharks yield a comparable range in frequency of tooth deformities. Variation in frequency of tooth deformity may reflect interspecific differences in feeding behavior and dietary preferences. There is no suggestion in our data of any strong patterns of temporal variation in tooth deformity frequency, or of patterns ­reflecting chondrichthian phylogenetic history and evolution. Skeletal components of the probable prey of the Cretaceous species are preserved in the same horizons as the deformed teeth, and also are found within co-occurring chondrichthian coprolites.  相似文献   

5.
The dental anatomy of elasmobranch fishes (sharks, rays and relatives) creates a functional system that is more dynamic than that of mammalian dentition. Continuous dental replacement (where new teeth are moved rostrally to replace older ones) and indirect fibrous attachment of the dentition to the jaw allow teeth to reorient relative to the jaw over both long- and short-term scales, respectively. In this study, we examine the processing behavior and dental anatomy of the lesser electric ray Narcine brasiliensis (Olfers, 1831) to illustrate that the freedom of movement of elasmobranch dentition allows a functional flexibility that can be important for complex prey processing behaviors. From static manipulations of dissected jaws and observations of feeding events in live animals, we show that the teeth rotate during jaw protrusion, resulting in a secondary grasping mechanism that likely serves to hold prey while the buccal cavity is flushed free of sediment. The function of teeth is not always readily apparent from morphology; in addition to short-term reorientation, the long-term dental reorientation during replacement allows a given tooth to serve multiple functions during tooth ontogeny. Unlike teeth inside the mouth, the cusps of external teeth (on the portion of the tooth pad that extends past the occlusal plane) lay flat, such that the labial faces act as a functional battering surface, protecting the jaws during prey excavation.  相似文献   

6.
Summary A rich engineering literature exists that is applicable to many aspects of vertebrate jaw mechanics and has been referred to in many studies in this sector. But mechanical engineering technology has provided few theoretical bases that are directly helpful in the study of predator teeth. Hence, analyses of puncturing and slicing functions of these teeth have lacked a firm physical technology as a background. Predator teeth have evolved to pierce and cut animal tissues that are usually compliant in that they readily undergo relatively large deformations under applied stress before they actually yield. The bulk of engineering theory is directed toward such noncompliant materials as wood and metal, the design of tools that cut them, and the mechanics involved in this. The purpose of the present paper is to scan the mechanical implications of different tooth designs, pose hypotheses that relate to primary considerations of the physics of cutting compliant substrates, and offer a preliminary approach that is intended as a useful guide to further studies on sharks and on other vertebrate groups. Thus, in this paper I have attempted to formulate some tentative and preliminary generalizations concerning the mechanics of cutting compliant materials. Then comes a survey of the teeth of a particular group of predators, three families of sharks, in terms of these preliminary formulations. The approach views the shark teeth in isolation from the complex cranial mechanism (presently under study) that functionally integrates with the teeth. Therefore, adaptive conclusions are minimal, because the evolutionary significance of tooth form cannot properly be assessed outside of an integrated study. However, certain correlations do exist between structural tooth characteristics and mechanics. Slender, smooth-edged (or nearly so) teeth can readily pierce prey, but are of less use in slicing it. Such teeth are typical of the lower jaw dentition in many sharks and, in a few species, they are present in both upper and lower jaws. Usually these slender teeth display a reversed curvature at their tips, so that although most of the tooth's crown is curved inward toward the mouth cavity, the tip is turned outward. This outward turning of the tip can enhance the probability of initial prey penetration, without much compromising the prey-retaining properties of the inward curvature of the greater, more proximal portion of the tooth. Many sharks possess upper teeth with serrations along the edges. The serrations vary from one species to another in coarseness and in distribution along tooth edges. Serrated teeth can make greater use of the available biting forces, and they have a greater cutting effect than do smooth-edged teeth. These latter depend upon friction which, because the coefficient friction is always less than 1.0 (often very much less), can make use of only a fraction of the total bite force. However, smooth tooth blades can pierce prey with less resistance and are less prone to binding (becoming immobilized) in the prey tissue. In many shark species serrations are concentrated along the proximal portions of the tooth crown, where the bases of adjacent teeth are in near contact along the jaw margin. In these regions food can be pressed during feeding, resulting in a binding of the teeth in the prey. Release of the binding must be accomplished by cutting the jammed food, to permit clearance of the prey material so it can slip past the tooth rows. The more prominent serrations in such regions may act to puncture and slice the jammed tissue. It is noted that commercial saws are typically designed in various ways to promote clearance between adjacent saw teeth. The pitch or rake of the teeth of sharks is discussed, as is the overall form of the tooth rows along the jaw margins. The relationship between the distribution of teeth along the jaw margins and surface irregularities of the prey surfaces is also considered.  相似文献   

7.
Mudskipping gobies (Periophthalminae) are among the most terrestrial of amphibious fishes. Specializations associated with terrestrial prey capture and deglutition have been studied in Periophthalmus koelreuteri by light and X-ray cinematography which permits direct visualization of pharyngeal jaw movement during deglutition. Anatomical specializations of the pharyngeal jaws are described and include depressible teeth, a large ventral process on ceratobranchial five, and muscular modifications.
Multiple terrestrial feedings occur by Periophthalmus without a return to the water, and cineradiography reveals that the buccal cavity is often filled with air during terrestrial excursions in contrast to some previous hypotheses. Transport of the prey into the oesophagus occurs primarily by anteroposterior movement of the upper pharyngeal jaw. The lower pharyngeal jaw plays a limited role in food transport and may serve primarily to hold and position prey. The bite between upper and lower pharyngeal jaws occurs between the anterior teeth, and both jaws are protracted together during raking of food into the oesophagus. Functional specializations correlated with terrestrial feeding include obligatory use of pharyngeal jaws for swallowing even small prey items and positioning of the prey in the pharynx by pharyngeal jaw and hyoid movements alone.
This analysis of terrestrial feeding allows hypotheses of design constraints imposed by the aquatic medium on fishes to be raised and tested.  相似文献   

8.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The predaceous neotropical characoid fish Ctenolucius has an essentially homodont dentition, the number of teeth increasing linearly with age. The basic manner of tooth replacement suggests that Ctenolucius is a primitive characoid. Tooth replacement continues throughout life and is similar to that of tetrapods, involving replacement waves which pass from the back to the front of the jaws. The waves containing the greatest number of teeth are found just anterior to the middle of the jaws. In the upper jaw the increase in the number of teeth is restricted to the anterior portion (premaxillary) whereas the number on the posterior part (maxillary) remains constant. In specimens measuring from 68–230 mm in standard length the posterior portion of the upper jaw doubles in length whereas the anterior portion triples. It is suggested that the area immediately anterior to the middle of the jaw, where replacement waves are longest, is where most of the increase in tooth numbers occurs. During growth of the teeth the absolute height is always greater than the absolute width as the shape changes. The final shape of the recurved conical teeth is determined only in the last stages of tooth formation when the main axis of growth abruptly changes.  相似文献   

10.
Two specimens of the peculiar squalid shark,Trigonognathus kabeyai gen. et sp. nov., were collected from the coastal waters of Wakayama and Tokushima, Japan, by bottom trawl at depths of 330 and 360 meters. Shape of teeth similar in both jaws; slender, unicuspid, canine-like, without any cusplets or serrations, with weak thin fold on both lingual and labial sides in anterior teeth on both jaws; tooth at symphysis of each jaw longest. Interspace between teeth very wide. Both jaws triangular in shape. Most of dermal denticles on body and head roughly rhombic, swollen very much near central part, with about 10–40 facets on the dorsal surface of its crown. Preoral snout length very short. Many small organs considered to be photophores present mainly on ventral surfaces of head and body.  相似文献   

11.
Movements of the neck, jaws, and hyolingual apparatus during inertial feeding in Caiman crocodilus were studied by cineradiography. Analysis reveals two kinds of cycles: inertial bites (reposition, kill/crush, and transport) and swallowing cycles. They differ in their gape profile and in displacement of the neck, cranium, and hyolingual apparatus. Inertial bites are initiated by an elevation of the neck and cranium; the head is then retracted backward, the prey simultaneously being lifted by the hyolingual apparatus. Next the lower jaw is depressed, and the prey is rapidly pushed further upward by the hyolingual apparatus. Thereafter fast mouth-closure occurs with the neck and cranium being abruptly depressed, the lower jaw elevated, and the hyolingual apparatus rapidly retracted ventrally. Depression of the neck and cranium thrusts the head forward and impacts the backward moving prey more posteriorly in the oral cavity. Swallowing cycles initially involve movement of the hyoid in front of the prey followed by rapid posteroventrad retraction of the hyoid, forcing the prey into the esophagus during opening and closing of the mouth. After mouth-closure, the hyoid apparatus is again protracted. Jaws, neck, tongue, and hyoid apparatus play an active role during intertial feeding sequences. At the beginning of a feeding sequence, the hyolingual apparatus mainly moves dorsoventrally, whereas toward the end of a sequence anteroposterior displacements of the hyoid are prominent. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Jaw protrusion is a major functional motif in fish feeding and can occur during mouth opening or closing. This temporal variation impacts the role that jaw protrusion plays in prey apprehension and processing. The lesser electric ray Narcine brasiliensis is a benthic elasmobranch (Batoidea: Torpediniformes) with an extreme and unique method of prey capture. The feeding kinematics of this species were investigated using high-speed videography and pressure transduction. The ray captures its food by protruding its jaws up to 100% of head length (approximately 20% of disc width) beneath the substrate and generating negative oral pressures (< or = 31 kPa) to suck worms into its mouth. Food is further winnowed from ingested sediment by repeated, often asymmetrical protrusions of the jaws (> 70 degrees deviation from the midline) while sand is expelled from the spiracles, gills and mouth. The pronounced ram contribution of capture (jaw protrusion) brings the mouth close enough to the food to allow suction feeding. Due to the anatomical coupling of the jaws, upper jaw protrusion occurs in the expansive phase (unlike most elasmobranchs and similar to bony fishes), and also exhibits a biphasic (slow-open, fast-open) movement similar to tetrapod feeding. The morphological restrictions that permit this unique protrusion mechanism, including coupled jaws and a narrow gape, may increase suction performance, but also likely strongly constrain dietary breadth.  相似文献   

13.
14.
Robert I.  Howes 《Journal of Zoology》1987,212(1):177-189
An SEM study of the surface morphology of the major stages of mature and developing teeth of the leopard frog was made using anorganic preparations of the teeth and jaws. After initial development, the crown area changed little during subsequent tooth eruption, ankylosis and maturation. The thin enamel covering extended further down the shaft than expected. After ankylosis, the surfaces of the tooth continued to mature. The unmineralized gap between the crown and the pedestal, which is prominent in most amphibians, gradually filled in as the ankylosed tooth aged. The upper portion of the pedestal initially formed a dentine surface which was globular in appearance due to partial calcification of the surface collagen fibres but became smooth with uniformly calcified fibres as the ankylosed tooth matured. The lower portion of the pedestal was more variable and there was a gradual transition of dentine into a more cellular, bone-like tissue which contained lacunae and larger fibre bundles. This bone-like tissue was very distinct in surface morphology from the bone of the adjacent jaw, and as the tooth matured it changed from a coarse, woven appearance to one more like lamellar bone. Resorption bays were present in both the dentine and bony areas of teeth which were being shed. During development, the pedestal, which attaches the tooth to the jaw, formed as a separate calcification site and did not form a complete ring until fusion of its buccal surface with that of the overlying crown. A bony buccal lip formed early as part of the pedestal.  相似文献   

15.
Tooth morphology is often used to inform the feeding ecology of an organism as these structures are important to procure and process dietary resources. In sharks, differences in morphology may facilitate the capture and handling of prey with different physical properties. However, few studies have investigated differences in tooth morphology over ontogeny, throughout the jaws of a single species, or among species at multiple tooth positions. Bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead sharks (Sphyrna tiburo) are coastal predators that exhibit ontogenetic dietary shifts, but differ in their feeding ecologies. This study measured tooth morphology at six positions along the upper and lower jaws of each species using elliptic Fourier analysis to make comparisons within and among species over their ontogeny. Significant ontogenetic differences were detected at four of the six tooth positions in bull sharks, but only the posterior position on the lower jaw appeared to exhibit a functionally relevant shift in morphology. No ontogenetic changes in morphology were detected in blacktip or bonnethead sharks. Intraspecific comparisons found that most tooth positions significantly differed from one another across all species, but heterodonty was greatest in bull sharks. Additionally, interspecific comparisons found differences among all species at each tooth position except between bull and blacktip sharks at two positions. These morphological patterns within and among species may have implications for prey handling efficiency, as well as in providing insight for paleoichthyology studies and reevaluating heterodonty in sharks.  相似文献   

16.
The evolution of robust jaws, hypsodont teeth, and large chewing muscles among grazing ruminants is a quintessential example of putative morphological adaptation. However, the degree of correlated evolution (i.e., to what extent the grazer feeding apparatus represents an evolutionary module), especially of soft and hard tissues, remains poorly understood. Recent generation of large datasets and phylogenetic information has made testing hypotheses of correlated evolution possible. We, therefore, test for correlated evolution among various traits of the ruminant masticatory apparatus including tooth crown height, jaw robustness, chewing muscle size, and characters of the molar occlusal surfaces, using phylogenetic and nonphylogenetic comparative methods as well as phylogenetic evolutionary model selection. We find that the large masseter muscles of grazing ruminants evolved with the inclusion of grass in the diet, an increase in the proportion of occlusal enamel bands oriented parallel to the chewing stroke, and possibly hypsodonty. We suggest that the masseter evolved under two evolutionary regimes: i) selection for higher masticatory forces during chewing and ii) flattening of the tooth profile, which resulted in reduced tooth guidance and, thus, a requirement for more chewing muscle activity during each chewing stroke, in agreement with previous research. The linear jaw metrics (depth of the mandibular angle, mandibular angle width, and length of the superficial masseteric scar) all show correlated evolution with hypsodonty and the proportion of enamel bands oriented parallel to the chewing stroke. We suggest that changes in the shape of the mandible represent the combined effects of selection for a reorientation of the chewing stroke, so as to emphasize horizontal translation of the teeth, and accommodation of high‐crowned teeth. Our analyses show that the ruminant feeding apparatus is an evolutionary mosaic with its various components showing both correlated and independent evolution. J. Morphol. 275:1093–1102, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Moray eels (Muraenidae) are a relatively large group of anguilliform fishes that are notable for their crevice-dwelling lifestyle and renowned for their ability to consume large prey. Morays apprehend their prey by biting and then transport prey by extreme protraction and retraction of their pharyngeal jaw apparatus. Here, we present a detailed interpretation of the mechanisms of pharyngeal jaw transport based on work with Muraena retifera. We also review what is known of the moray pharyngeal jaw apparatus from the literature and provide comparative data on the pharyngeal jaw elements and kinematics for other moray species to determine whether interspecific differences in morphology and behavior are present. Rather than comprising broad upper and lower processing tooth plates, the pharyngeal jaws of muraenine and uropterygiine morays, are long and thin and possess large, recurved teeth. Compared with the muraenines, the pharyngobranchials of the uropterygiines do not possess a horn-shaped process and their connection to the fourth epibranchial is dorsal rather than medial. In addition, the lower tooth plates do not exhibit a lateral groove that serves as a site of muscle attachment for the pharyngocleitheralis and the ventral rather than the lateral side of the lower tooth plate attaches to the fourth ceratobranchial. In all morays, the muscles positioned for protraction and retraction of the pharyngeal apparatus have undergone elongation, while maintaining the generalized attachment sites on the bones of the skull and axial skeleton. Uropterygiines lack a dorsal retractor muscle and we presume that retraction of the pharyngeal jaws is achieved by the pharyngocleitheralis and the esophagus. The fifth branchial adductor is greatly hypertrophied in all species examined, suggesting that morays can strongly adduct the pharyngeal jaws during prey transport. The kinematics of biting behavior during prey capture and transport resulted in similar magnitudes of cranial movements although the timing of kinematic events was significantly different and the duration of transport was twice as long as prey capture. We speculate that morays have evolved this alternative prey transport strategy as a means of overcoming gape constraints, while hunting in the confines of coral reefs.  相似文献   

18.
Protrusion of the jaws during feeding is common in Batoidea (rays, skates, sawfishes, and guitarfishes), members of which possess a highly modified jaw suspension. The lesser electric ray, Narcine brasiliensis, preys primarily on polychaete annelids using a peculiar and highly derived mechanism for jaw protraction. The ray captures its prey by protruding its jaws beneath the substrate and generating subambient buccal pressure to suck worms into its mouth. Initiation of this protrusion is similar to that proposed for other batoids, in that the swing of the distal ends of the hyomandibulae is transmitted to Meckel's cartilage. A "scissor-jack" model of jaw protrusion is proposed for Narcine, in which the coupling of the upper and lower jaws, and extremely flexible symphyses, allow medial compression of the entire jaw complex. This results in a shortening of the distance between the right and left sides of the jaw arch and ventral extension of the jaws. Motion of the skeletal elements involved in this extreme jaw protrusion is convergent with that described for the wobbegong shark, Orectolobus maculatus. Narcine also exhibits asymmetrical protrusion of the jaws from the midline during processing, accomplished by unequal depression of the hyomandibulae. Lower jaw versatility is a functional motif in the batoid feeding mechanism. The pronounced jaw kinesis of N. brasiliensis is partly a function of common batoid characteristics: euhyostylic jaw suspension (decoupling the jaws from the hyoid arch) and complex and subdivided cranial musculature, affording fine motor control. However, this mechanism would not be possible without the loss of the basihyal in narcinid electric rays. The highly protrusible jaw of N. brasiliensis is a versatile and maneuverable feeding apparatus well-suited for the animal's benthic feeding lifestyle.  相似文献   

19.
Loricariidae or suckermouth armored catfishes are one of several aquatic taxa feeding on epilithic and epiphytic algae. Their upper and lower jaws bear exquisitely curved teeth, which usually are asymmetrically bicuspid. The enlarged lower lip carries papillae with keratinous unicellular epidermal brushes or unculi. Teeth, and probably unculi too, assist in scraping food off substrates. Their morphology, growth, and replacement is examined and compared among several loricariid species, using cleared and stained specimens, serial sections, and SEM. Apart from the general tooth form and crown shape, the anterior layer of soft tissue on the lower shaft region, present in several species, appears to be a specialization for enhancing the mobility of individual teeth when scraping on uneven surfaces. During early ontogeny, a transition from simple conical to mature tooth occurs. The first unculi appear together with the first teeth carrying a bicuspid crown, 2 days after the first exogenous feeding, but synchronous with the complete resorption of the yolk sac.  相似文献   

20.
The horn sharks (Heterodontidae: Chondrichthyes) represent one of four independent evolutions of durophagy in the cartilaginous fishes. We used high-resolution computed tomography (CT scanning) to visualize and quantify the mineralized tissue of an ontogenetic series of horn sharks. CT scanning of neonatal through adult California horn sharks (Heterodontus francisci) confirmed that this technique is effective for examining mineralized tissue in even small (<10 mm) specimens. The jaw joint is among the first areas to become mineralized and is the most heavily mineralized area in the cranium of a neonatal horn shark. The hyoid is also well mineralized, although the poorly mineralized molariform teeth indicate that the neonatal animal may be a suction feeder on softer prey. The symphysis of the jaws never mineralizes, in sharp contrast to the condition in the hard prey-crushing stingrays. Digitally reslicing the CT scans along the jaws allowed measurement of the second moment of area (Ina). Assuming that the jaws are made of the same material at all ages, Ina is an indicator of the flexural stiffness of the jaws. In all sizes of shark the lower jaws were stiffer than the upper and the stiffness increased in the area of the molariform teeth. The central region of the jaws, where the rami meet, support cuspidate grasping teeth and has the lowest Ina. The spotted eagle ray (Aetobatus narinari), a hard prey-crushing stingray, shows a different pattern of flexural stiffness, with the peak at the central part of the jaws where the prey is reduced between flattened tooth plates. Although the eagle ray jaws have a higher Ina than the horn shark, they are also far more heavily mineralized. When the relative amounts of mineralization are taken into account, horn sharks do better with what mineral they have than does the eagle ray. With a tight jaw joint and loose mandibular symphysis, as well as nearly opposite patterns of stiffness in the jaws, it is clear that two of the clades of hard prey specialists use very different methods for cracking the hard prey problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号