首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serotonergic Retzius (R) neurons of the leech form a Cl-dependent synapse with pressure-sensitive (P) neurons both in vivo and in vitro. However, P cells show an extrasynaptic, cationic response to application of 5-hydroxytryptamine (5-HT) which is reduced upon contact between the neurons in culture. We have examined the cellular specificity of the selection of 5-HT responses in the P cell by pairing it in culture with a variety of identified neurons. Non-synaptic sensory cells, non-serotonergic pre- and postsynaptic partners and serotonergic neurons that do not form chemical synapses with the P cell failed to alter its responses to 5-HT. The selective reduction of the extrasynaptic response to 5-HT in the P cell therefore appears to be induced specifically by contact with its only known serotonergic partner during neuronal recognition leading to synapse formation.  相似文献   

2.
In an attempt to define the mechanism of synaptic specificity, we have been studying pairs of identified leech neurons isolated in tissue culture. The cultured neurons reform specific synapses when paired with appropriate partners in the absence of other cell types. In recent studies, we have examined in detail the reformation of a serotoninergic synapse between the Retzius cell and one of its targets, the pressure sensitive (P) cell. The P cell in vivo and its soma in vitro have two types of responses to serotonin (5-HT). From voltage clamp analysis of cultured P cells, we demonstrated the parallel activation of chloride (gCls) and monovalent cation (gCations) channels coupled to distinct receptor subtypes and gated by separate second messengers. Only gCls was activated by 5-HT released from the presynaptic Retzius cell both in vivo and in vitro. This demonstrates the remarkable specificity of the reformation of this synapse in culture since only the correct 5-HT receptor subtype is activated. An 80% reduction of gCations was observed in P cells that had failed to be innervated by Retzius cells in culture, suggesting that gCations may be lost prior to synapse formation. Retzius cells depleted of 5-HT also reduced gCations in the paired P cells and incubating single P cells in 5-HT did not reduce gCations. In addition, aldehyde-fixed Retzius cells were able to selectively reduce gCations when paired with P cells. We conclude that the loss of gCations was due to contact between the neurons. The early clearing of counter-effective receptor subtypes may be a prelude to synapse formation.  相似文献   

3.
An early event in the formation of the serotonergic synapse by the Retzius (R) onto the pressure-sensitive (P) neurons of the leech is the elimination of an extrasynaptic response to transmitter from sites of contact on the postsynaptic cell. This event during synapse formation is cell-specific in that it is elicited in vitro by contact with the presynaptic R cell but not with other neurons. In the study reported here, we investigated the nature of this interaction between R and P neurons. The loss of the extrasynaptic response of the P cell was elicited by contact with R cells fixed in a mild paraformaldehyde solution, but not by R cells treated with the proteolytic enzyme trypsin prior to fixation. As well, a variety of lectins were assayed for their ability to interfere with synapse formation. The transmitter responses of P cells plated on lectin-coated substrates were unaffected. However, exposure of the R cell to the lectin wheat germ agglutinin (WGA), but not to other lectins, prior to pairing prevented the loss of the extrasynaptic response in contacted P cells and blocked the formation of the R? P synapse in culture. We conclude that recognition by the P cell of the R cell during synapse formation may be mediated by an R cell-specific surface protein which binds wheat germ agglutinin. 1994 John Wiley & Sons, Inc.  相似文献   

4.
—Previous workers have reported that the colossal cells of Retzius in the segmental ganglia of the medicinal leech contain about 2.3 pmol of 5-hydroxytryptamme (5-HT)/cell body. We verify the identify of 5-HT in the Retzius cells by gas chromatography-mass spectrometry and derive concentrations of 1.3–4.1 pmol/neuron by analyses of eight individually dissected Retzius cell bodies. The Retzius cell bodies contain about 30% of the 5-HT in each ganglion. An average of 25 pmol 5-HT/mg tissue, a concentration about 500 times lower than that in the Retzius cell, was found in the fibrous, pigmented tissue surrounding the leech nervous system. We could not detect γ-aminobutyric acid, octopamine, dopamine or norepinephrine in the Retzius cells, in the pigmented tissue, or, with the possible exception of dopamine (±0.4 pmol/ganglion), in whole ganglia. Furthermore, we could not detect 5-HT in pooled samples of 100 non-chromaffin control neurons.  相似文献   

5.
P Drapeau 《Neuron》1990,4(6):875-882
When serotonergic Retzius (R) neurons of the leech contact pressure-sensitive (P) neurons in culture, P cells selectively lose a protein kinase C-dependent cationic response to serotonin and the R cell reforms the inhibitory, chloride-dependent synapse seen in vivo. In P cells not contacted by R cells, cell-attached patches contained single cation channels sensitive to serotonin and phorbol ester with characteristic properties and high incidence (present in about one-half of the patches). P cells paired with R cells had a cation channel with similar biophysical properties and incidence, but channel activity was not stimulated by serotonin and phorbol ester. These results suggest that the early clearing of the non-synaptic (excitatory) response to serotonin is due to the loss of activation by protein kinase C (and not the number) of cation channels as a prelude to inhibitory synapse formation.  相似文献   

6.
The aim of our experiments has been to analyse how formation of chemical synapses affects the distribution of calcium (Ca2+) currents and neurite outgrowth of leech Retzius cells. Previous results showed that Ca2+ currents measured in the initial process or 'stump' of postsynaptic cells were significantly smaller than those in corresponding sites on presynaptic neurons. In the present experiments, neurons were plated together in close apposition as pairs or as triads, with the tip of one Retzius cell touching the soma of another. Ca2+ currents from selected areas of the neuronal surfaces were measured by loose-patch recording before and after the formation of chemically mediated synaptic connections, which developed in about 8 h. With three cells arranged in a row, the last of the series, which was purely postsynaptic (i.e. with no target), also showed a dramatic reduction in Ca2+ currents in its initial segment, compared with the currents seen in either the first cell (purely presynaptic) or the second cell of the chain (which was both postsynaptic to the first cell and presynaptic to the third). This suggests that retrograde as well as anterograde effects on Ca2+ currents occurred as a result of synapse formation: the Ca2+ currents in the middle cell did not decrease although a synapse had been formed on it. To test for additional consequences of synapse formation, neurite outgrowth was measured in postsynaptic cells and in single cells plated on an extract of extracellular matrix containing laminin (ECM-laminin). After 48 h, the total length of neuritic outgrowth in postsynaptic cells was only about one third of that in single cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
S Catarsi  P Drapeau 《Neuron》1992,8(2):275-281
Pressure-sensitive (P) neurons contacted by serotonergic Retzius (R) neurons of the leech in culture selectively reduce a protein kinase C (PKC)-dependent cation response to serotonin and are innervated by the inhibitory, Cl(-)-dependent synapse seen in vivo. We have examined whether the reduction of extrasynaptic cation channel modulation is due to changes in sensitivity of the channels to second messenger. In inside-out membrane patches from single, uncontacted P cells in culture, cation channel activity was increased by rat brain PKC and cofactors. In contrast, the activity of cation channels in patches isolated from P cells paired with R cells was unaffected by PKC. These results demonstrate the loss of extrasynaptic channel modulation by PKC during synapse formation.  相似文献   

8.
5-Hydroxytryptamine (5-HT) is a ubiquitous neurotransmitter and neuromodulator that affects neural circuits and behaviours in vertebrates and invertebrates. In the present study, we have investigated 5-HT-induced Ca(2+) transients in subcellular compartments of Retzius neurons in the leech central nervous system using confocal laser scanning microscopy, and studied the effect of 5-HT on the electrical coupling between the Retzius neurons. Bath application of 5-HT (50mM) induced a Ca(2+) transient in axon, dendrites and cell body of the Retzius neuron. This Ca(2+) transient was significantly faster and larger in dendrites than in axon and cell body, and was half-maximal at a 5-HT concentration of 5-12mM. The Ca(2+) transient was suppressed in the absence of extracellular Ca(2+) and by methysergide (100mM), a non-specific antagonist of metabotropic 5-HT receptors, and was strongly reduced by bath application of the Ca(2+) channel blocker Co(2+) (2mM). Injection of the non-hydrolysable GTP analogue GTPgammaS increased and prolonged the dendritic 5-HT-induced Ca(2+) transient. The non-selective protein kinase inhibitor H7 (100mM) and the adenylate cyclase inhibitor SQ22536 (500 mM) did not affect the Ca(2+) transient, and the membrane-permeable cAMP analogue dibutyryl-cAMP (500 mM) did not mimic the effect of 5-HT application. 5-HT reduced the apparent electrical coupling between the two Retzius neurons, whereas suppression of the Ca(2+) influx by removal of external Ca(2+) improved the transmission of action potentials at the electrical synapses which are located between the dendrites of the adjacent Retzius neurons. The results indicate that 5-HT induces a Ca(2+) influx through calcium channels located primarily in the dendrites, and presumably activated by a G protein-coupled 5-HT receptor. The dendritic Ca(2+) increase appears to modulate the excitability of, and the synchronization between, the two Retzius neurons.  相似文献   

9.
The accessibility of embryonic and adult neurons within invertebrate nervous systems has made them excellent subjects for neurobiological study. The ability to readily identify individual neurons, together with their great capacity for regeneration, has been especially beneficial to investigations of synapse formation and the specificity of neuronal connectivity. Many invertebrate neurons survive for long periods following isolation into primary cell culture. In addition, they readily extend new neuritic arbors and form electrical and chemical connections at sites of contact. Thus, cell culture approaches have allowed neuroscientists greater access to, and resolution of, events underlying neurite outgrowth and synaptogenesis. Studies of identified neuromuscular synapses ofHelisoma have determined a number of signaling mechanisms involved in transsynaptic communication at sites of neuron-target contact. At these sites, both anterograde and retrograde signals regulate the transformation of growth cones into functional presynaptic terminals. We have found that specific muscle targets induce both global and local changes in neurotransmitter secretion and intracellular calcium handling. Here we review recent studies of culturedHelisoma synapses and discuss the mechanisms thought to govern chemical synapse formation in these identified neurons and those of other invertebrate species.  相似文献   

10.
Experiments have been made to follow the development of chemical and electrical transmission between pairs of leech neurons in culture. 1. The cell bodies of identified neurons were isolated from the CNS by suction after mild enzyme treatment, together with a length of the initial segment (or 'stump'). The neurons tested were Retzius cells (R), annulus erector motoneurons (AE), Anterior pagoda cells (AP) and pressure sensory cells (P). Pairs of cells were placed together in various configurations, with different sites on their surfaces making contact. 2. When pairs of Retzius cells were apposed with their stumps touching, serotonergic, chemically mediated synaptic transmission became apparent before electrical transmission. By 2.5 h impulses in either of the two Retzius cells produced hyperpolarizing inhibitory potentials in the other. These potentials were reversed by raised intracellular Cl and showed clear facilitation. The strength of chemical transmission between Retzius cells increased over the next 72 h. 3. After chemical transmission had been established, weak non-rectifying electrical transmission became apparent between Retzius cells at about 24-72 h. By 4 days coupling became stronger and tended to obscure chemically evoked synaptic potentials. 4. When pairs of Retzius cells were aligned in culture with the tip of one cell stump touching the soma of the other, chemical transmission also developed rapidly. Transmission was, however, in one direction, from stump to soma. At later stages non-rectifying electrical coupling developed as with stump-stump configuration. With the cell bodies of two Retzius cells apposed, electrical coupling developed after several days, before chemical transmission could be observed. 5. When Retzius and P cells were cultured with their stumps in contact, inhibitory chemical synaptic transmission developed within 24 h. Transmission was always in one direction, from Retzius to P cell. Electrical coupling of Retzius and P cells never occurred whatever the spatial relations of the cells to one another. 6. Annulus erector motoneurons, which contain ACh and a peptide resembling FMRFamide, first developed electrical coupling when the two stumps were in contact and then, later, bi-directional chemical transmission. Anterior Pagoda pairs placed stump-to-stump showed electrical connections. 7. Electronmicrographs revealed the presence of synaptic structures within 24 h after Retzius-Retzius, Retzius-P or AE-AE stumps were apposed. 8. The specificity of connections between cultured cells was similar to that observed in earlier experiments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about -20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of -13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing "backwards" across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

12.
Postsynaptic potentials (PSPs) recorded from leech Retzius cells in response to stimulation of interganglionic connective could not be reversed by soma depolarization or abolished by 40 mM Mg ion, nor could input resistance changes be detected during them. Alteration of external Cl and K over a tenfold range provided no clear evidence that the PSPs involved a conductance change to either ion. The method of extrapolation yielded an apparent PSP equilibrium potential of about ?20 mV. The steep portion of the relationship between Retzius cell action potential amplitude and membrane potential extrapolated to an apparent reversal potential of ?13 mV. It is likely that the connective-to-Retzius cell PSPs were principally electrical events. Their apparent reversal potentials could have been in the range associated with chemical synapses because they traversed an electrical synapse with a variable coupling resistance, or because the polarizing currents, passing “backwards” across electrical synapses, changed the amplitude of the presynaptic action potentials.  相似文献   

13.
In contrast to the limited repair observed in the mammalian central nervous system (CNS), injured neurons in the leech reliably regenerate synapses and restore function with remarkable accuracy at the level of individual neurons. New and recent results reveal important roles for microglial cells and extracellular matrix components, including laminin, in repair. Tissue culture experiments have permitted isolation of neurons and manipulation of their environment, providing insights into the influence of substrate, electrical activity, and other cells, including microglia, on axon growth and synapse formation. The results account for distinctive features of successful repair in the adult leech, where axonal sprouting and target selection can be influenced by unequal competition between neurons. Differences between the formation of connections during embryonic development and repair in the adult include dissimilarities in the roles of glia and microglia in adults and embryos, suggesting that axon growth during regeneration in the CNS is not simply a recapitulation of processes observed during embryonic development. It may be possible in the future to improve mammalian CNS regeneration by recruiting cells whose counterparts in the leech have been identified as instrumental in repair. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
By the frequency-dependent release of serotonin, Retzius neurons in the leech modulate diverse behavioral responses of the animal. However, little is known about how their firing pattern is produced. Here we have analyzed the effects of mechanical stimulation of the skin and intracellular stimulation of mechanosensory neurons on the electrical activity of Retzius neurons. We recorded the electrical activity of neurons in ganglia attached to their corresponding skin segment by segmental nerve roots, or in isolated ganglia. Mechanosensory stimulation of the skin induced excitatory synaptic potentials (EPSPs) and action potentials in both Retzius neurons in a ganglion. The frequency and duration of responses depended on the strength and duration of the skin stimulation. Retzius cells responded after T and P cells, but before N cells, and their sustained responses correlated with the activity of P cells. Trains of five impulses at 10 Hz in every individual T, P, or N cell in isolated ganglia produced EPSPs and action potentials in Retzius neurons. Responses to T cell stimulation appeared after the first impulse. In contrast, the responses to P or N cell stimulation appeared after two or more presynaptic impulses and facilitated afterward. The polysynaptic nature of all the synaptic inputs was shown by blocking them with a high calcium/magnesium external solution. The rise time distribution of EPSPs produced by the different mechanosensory neurons suggested that several interneurons participate in this pathway. Our results suggest that sensory stimulation provides a mechanism for regulating serotonin-mediated modulation in the leech.  相似文献   

15.
Novel chemical and electrical connections form between neurons not normally connected in the buccal ganglia of the snail Helisoma. We examined the cellular and environmental conditions required for the formation of each type of connection. Previous work in situ showed that novel electrical connections could form in response to axotomy. We have now found that axotomy can evoke the formation of novel unidirectional chemical connections between neurons B5 and B4 in addition to a novel electrical connection. The novel chemical connections display all of the normal properties of chemical synapses in Helisoma ganglia. These connections, however, are transient in nature and break 4 days following axotomy. Previous work has shown that conjoint outgrowth is required for the formation of electrical connections. In cell culture we have investigated whether conjoint outgrowth is also required for chemical synaptogenesis. Using neurons B5 and B19 we have found that when neuron pairs make contact in cell culture, under conditions of synchronous neurite extension, both electrical and chemical synapses form. However, if one neuron has ceased extension prior to contact by a growing neuron, electrical synapses never form (Hadley et al., 1983, 1985) but chemical synapses do form. Furthermore, the addition of serotonin (10(-6) M) to culture medium to inhibit neurite extension of B19, but not that of B5, selectively prevents the formation of electrical connections while permitting the formation of chemical synapses. Thus, the timing of contact in relation to the state of neurite extension can specify the type of connection a given neuron can form.  相似文献   

16.
Shen K  Bargmann CI 《Cell》2003,112(5):619-630
During nervous system development, neurons form reproducible synapses onto specific targets. Here, we analyze the development of stereotyped synapses of the C. elegans HSNL neuron in vivo. Postsynaptic neurons and muscles were not required for accurate synaptic vesicle clustering in HSNL. Instead, vulval epithelial cells that contact HSNL act as synaptic guidepost cells that direct HSNL presynaptic vesicles to adjacent regions. The mutant syg-1(ky652) has defects in synapse formation that resemble those in animals that lack vulval epithelial cells: HSNL synaptic vesicles fail to accumulate at normal synaptic locations and form ectopic anterior clusters. syg-1 encodes an immunoglobulin superfamily protein that acts in the presynaptic HSNL axon. SYG-1 protein is localized to the site of future synapses, where it initiates synapse formation and localizes synaptic connections in response to the epithelial signal. SYG-1 is related to Drosophila IrreC and vertebrate NEPH1 proteins, which mediate cell-cell recognition in diverse developmental contexts.  相似文献   

17.
In a culture system where a bifurcated Aplysia sensory neuron makes synapses with two motor neurons, repeated application of serotonin (5-HT) to one synapse produces a CREB-mediated, synapse-specific, long-term facilitation, which can be captured at the opposite synapse by a single pulse of 5-HT. Repeated pulses of 5-HT applied to the cell body of the sensory neuron produce a CREB-dependent, cell-wide facilitation, which, unlike synapse-specific facilitation, is not associated with growth and does not persist beyond 48 hr. Persistent facilitation and synapse-specific growth can be induced by a single pulse of 5-HT applied to a peripheral synapse. Thus, the short-term process initiated by a single pulse of 5-HT serves not only to produce transient facilitation, but also to mark and stabilize any synapse of the neuron for long-term facilitation by means of a covalent mark and rapamycin-sensitive local protein synthesis.  相似文献   

18.
The role of 5-hydroxytryptamine (5-HT, serotonin) in the control of leech behavior is well established and has been analyzed extensively on the cellular level; however, hitherto little is known about the effect of 5-HT on the cytosolic free calcium concentration ([Ca(2+)](i)) in leech neurons. As [Ca(2+)](i) plays a pivotal role in numerous cellular processes, we investigated the effect of 5-HT on [Ca(2+)](i) (measured by Fura-2) in identified leech neurons under different experimental conditions, such as changed extracellular ion composition and blockade of excitatory synaptic transmission. In pressure (P), lateral nociceptive (N1), and Leydig neurons, 5-HT induced a [Ca(2+)](i) increase which was predominantly due to Ca(2+) influx since it was abolished in Ca(2+)-free solution. The 5-HT-induced Ca(2+) influx occurred only if the cells depolarized sufficiently, indicating that it was mediated by voltage-dependent Ca(2+) channels. In P and N1 neurons, the membrane depolarization was due to Na(+) influx through cation channels coupled to 5-HT receptors, whereby the dose-dependency suggests an involvement in excitatory synaptic transmission. In Leydig neurons, 5-HT receptor-coupled cation channels seem to be absent. In these cells, the membrane depolarization activating the voltage-dependent Ca(2+) channels was evoked by 5-HT-triggered excitatory glutamatergic input. In Retzius, anterior pagoda (AP), annulus erector (AE), and median nociceptive (N2) neurons, 5-HT had no effect on [Ca(2+)](i).  相似文献   

19.
Lyles V  Zhao Y  Martin KC 《Neuron》2006,49(3):349-356
mRNA localization and regulated translation provide a means of spatially restricting gene expression within neurons during axon guidance and long-term synaptic plasticity. Here we show that synapse formation specifically alters the localization of the mRNA encoding sensorin, a peptide neurotransmitter with neurotrophin-like properties. In isolated Aplysia sensory neurons, which do not form chemical synapses, sensorin mRNA is diffusely distributed throughout distal neurites. Upon contact with a target motor neuron, sensorin mRNA rapidly concentrates at synapses. This redistribution only occurs in the presence of a target motor neuron and parallels the distribution of sensorin protein. Reduction of sensorin mRNA, but not protein, with dsRNA inhibits synapse formation. Our results indicate that synapse formation can alter mRNA localization within individual neurons. They further suggest that translation of a specific localized mRNA, encoding the neuropeptide sensorin, is required for synapse formation between sensory and motor neurons.  相似文献   

20.
Dissociated cultures from many species have been important tools for exploring factors that regulate structure and function of central neuronal synapses. We have previously shown that cells harvested from brains of late stage Drosophila pupae can regenerate their processes in vitro. Electrophysiological recordings demonstrate the formation of functional synaptic connections as early as 3 days in vitro (DIV), but no information about synapse structure is available. Here, we report that antibodies against pre-synaptic proteins Synapsin and Bruchpilot result in punctate staining of regenerating neurites. Puncta density increases as neuritic plexuses develop over the first 4 DIV. Electron microscopy reveals that closely apposed neurites can form chemical synapses with both pre- and postsynaptic specializations characteristic of many inter-neuronal synapses in the adult brain. Chemical synapses in culture are restricted to neuritic processes and some neurite pairs form reciprocal synapses. GABAergic synapses have a significantly higher percentage of clear core versus granular vesicles than non-GABA synapses. Gap junction profiles, some adjacent to chemical synapses, suggest that neurons in culture can form purely electrical as well as mixed synapses, as they do in the brain. However, unlike adult brain, gap junctions in culture form between neuronal somata as well as neurites, suggesting soma ensheathing glia, largely absent in culture, regulate gap junction location in vivo. Thus pupal brain cultures, which support formation of interneuronal synapses with structural features similar to synapses in adult brain, are a useful model system for identifying intrinsic and extrinsic regulators of central synapse structure as well as function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号