首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the period of synapse elimination, motoneurons are impaired in their ability to generate or regenerate axonal branches: following partial denervation of their target muscle, young motoneurons do not sprout to nearby denervated fibers and after axonal injury, they fail to reinnervate the muscle. In the rat levator ani (LA) muscle, which is innervated by motoneurons in the spinal nucleus of the bulbocavernosus (SNB), synapse elemination ends relatively late in development and can be regulated by testosterone. We took advantage of this system to determine if the end of synapse elimination and the development of regenerative capabilities by motoneurons share a common mechanism, or, alternatively, if these two events can be dissociated in time. Axotomy on or before postnatal day 14 (P14) caused the death of SNB motoneurons. By P21, toward the end of synapse elimination in the LA muscle, SNB motoneurons had developed the ability to survive axonal injury. Altering testosterone levels by castration on P7 followed by 4 weeks of either testosterone propionate or control injections did not change the ability of SNB motoneurons to survive axonal injury during development, although these same treatments alter the time course of synapse elimination in the LA muscle. Thus, we dissociated the inability of SNB motoneurons to recover from axonal injury from their developmental elimination of synaptic terminals. We also measured the effect of early axotomy on motoneuronal soma size and on target muscle weight. Axotomy on P14 caused a long-lasting decrease in the soma size of surviving SNB motoneurons, whereas motoneurons axotomized on P28 recovered their normal soma size. Axotomy on or before P7 caused severe atrophy of the target muscles, matching the extensive loss of motoneurons. However, target muscle recovery after axotomy on P14 was as good as recovery after axotomy at later ages, despite greater motoneuronal death after axotomy on P14. This result may reflect an increase in motor unit size, a decrease in polyneuronal innervation by SNB motoneurons that survive axotomy on P14, or a combination of the two. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
We have previously demonstrated that brain‐derived neurotrophic factor (BDNF) interacts with testosterone to regulate dendritic morphology of motoneurons in the highly androgen‐sensitive spinal nucleus of the bulbocavernosus (SNB). Additionally, in adult male rats testosterone regulates BDNF in SNB motoneurons and its target muscle, the bulbocavernosus (BC). Because BDNF is retrogradely transported from skeletal muscles to spinal motoneurons, we hypothesized that testosterone could regulate BDNF in SNB motoneurons by acting locally at the BC muscle. To test this hypothesis, we restricted androgen manipulation to the SNB target musculature. After castration, BDNF immunolabeling in SNB motoneurons was maintained at levels similar to those of gonadally intact males by delivering testosterone treatment directly to the BC muscle. When the same implant was placed interscapularly in castrated males it was ineffective in supporting BDNF immunolabeling in SNB motoneurons. Furthermore, BDNF immunolabeling in gonadally intact adult males given the androgen receptor blocker hydroxyflutamide delivered directly to the BC muscle was decreased compared with that of gonadally intact animals that had the same hydroxyflutamide implant placed interscapularly, or when compared with castrated animals that had testosterone implants at the muscle. These results demonstrate that the BC musculature is a critical site of action for the androgenic regulation of BDNF in SNB motoneurons and that it is both necessary and sufficient for this action. Furthermore, the local action of androgens at the BC muscle in regulating BDNF provides a possible mechanism underlying the interactive effects of testosterone and BDNF on motoneuron morphology. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 587–598, 2013  相似文献   

3.
The polyclonal antiserum PG21 was used to detect androgen receptor (AR) protein in three motoneuronal pools of the male rat lumbar spinal cord. In gonadally intact, wild-type males, the spinal nucleus of the bulbocavernosus (SNB), dorsolateral nucleus (DLN), and retrodorsolateral nucleus (RDLN) all displayed immunolabeling of cell nuclei. The percentage of motoneurons displaying such labeling was highest in the SNB and lowest in the RDLN. This pattern of AR immunocytochemical labeling agrees well with previous steroid autoradiographic studies of androgen accumulation in the rat spinal cord. In contrast, virtually no motoneurons in any of the three pools displayed nuclear AR immunostaining in long-term gonadectomized males or in gonadally intact males carrying the Tfm mutation, which renders the AR incompetent. In gonadectomized males, labeling was restored in the SNB and DLN, but not the RDLN, 30 min after an injection of replacement testosterone. Eight hours of testosterone exposure restored immunolabeling in all three motor nuclei. Apparent cytoplasmic staining was seen in SNB motoneurons of untreated castrates and Tfm rats, but not intact rats, suggesting that AR residing in the cytoplasm translocates to the nucleus on binding to androgen in these motoneurons. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. The sex difference arises through the androgenic sparing of the motoneurons and their target muscles from ontogenetic cell death. Indirect evidence suggests that androgen acts on the target muscles rather than directly on SNB motoneurons to spare them from death. The testicular feminization mutation (Tfm), a defect in the androgen receptor (AR), blocks androgenic sparing of SNB motoneurons and their targets. The pattern of AR immunocytochemistry was previously found to be different in adultTfmand wild-type rats: immunostaining was nuclear in most SNB cells of wild-type rats, but very few SNB cells display nuclear AR immunostaining in affectedTfmrats. Because theTfmmutation is carried on the X chromosome, random X inactivation during development makes female carriers ofTfm(+/Tfm) genetic mosaics for androgen sensitivity.Tfmcarriers, their wild-type sisters, and affectedTfmmales were treated with perinatal testosterone and immunocytochemistry was used to detect androgen receptor in the SNB when the rats reached adulthood. Mosaic females could be distinguished from their wild-type sisters by external morphology. In such perinatally androgenized mosaics, adult SNB cells were equally divided between wild-type andTfmgenotype, as indicated by AR immunocytochemistry. In contrast, the pattern of AR immunocytochemistry in target muscles of mosaics appeared similar to that of wild-type females. These results indicate that early androgen spared both androgen-sensitive and -insensitive motoneurons from cell death, confirming a site of androgen action other than the motoneurons themselves.  相似文献   

5.
During development, survival of the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) and its target perineal muscles, the bulbocavernosus (BC) and the levator ani (LA) is androgen-dependent. To define androgen's site of action in masculinizing SNB system structures, we examined whether or not androgen receptors are present in SNB motoneurons and/or BC/LA muscles of neonatal male rats. Using a receptor binding assay, we have identified androgen-binding factors in the neonatal BC/LA (Bmax = 13.5 fmol/mg protein; Kd = 4.69 nM) for the first time. In contrast, androgen autoradiography provided no evidence that neonatal spinal motoneurons accumulate androgens. These results support the hypothesis that BC/LA muscles are a primary site of androgen action for masculinizing SNB system structures, and that androgen need not interact with SNB motoneurons directly to sexually differentiate them.  相似文献   

6.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB.  相似文献   

7.
The striated bulbocavernosus (BC) muscles of the rodent perineum are innervated by motoneurons in the spinal nucleus of the bulbocavernosus (SNB). In adulthood, the BC muscles are present in males only. However, newborn female rats have BC muscles, and SNB cells have made both anatomical and functional contact with them. Nevertheless, both motoneurons and muscles will degenerate unless androgens are administered perinatally. Such androgen treatment appears to be acting primarily on the BC muscles themselves, since the muscles are spared by androgen even after the loss of supraspinal neural afferents or even the entire lumbosacral spinal cord. Furthermore, androgen can spare SNB motoneurons that are themselves androgen insensitive. Perinatal steroid treatments can also alter the final spinal location of SNB cells as determined by retrograde tracing studies. Androgen continues to modify the morphology of the SNB system in adulthood, altering the size of both motoneurons and targets, which may be important for the reproductive function of BC muscles. Finally, the sexually dimorphic character of motoneuronal groups innervating perineal muscles seems to be common in mammals, since the homologue of the SNB, Onuf's nucleus, has more cells in males than in females in both dogs and humans.  相似文献   

8.
Androgens are thought to mediate sexual differentiation of spinal nucleus of the bulbocavernosus (SNB) motoneurons via actions on androgen receptors (ARs) within their target muscles bulbocavernosus and levator ani (LA). However, the cells within these muscles which mediate masculinization of the SNB remain undefined. Until recently, myocytes were thought to be the most likely candidate cell type. However, genetic tests of AR function in myocytes have failed to support a sufficient role for these cells in producing masculine SNB morphology, suggesting the involvement of other cell types. To identify other candidate cell types in the LA, we evaluated whether satellite cells or fibroblasts express AR. Fluorescent immunohistochemistry and confocal microscopy were used to evaluate whether satellite cells and fibroblasts express AR in neonatal male and female rats in the LA and an adjacent sexually monomorphic control muscle (CM). We found that a small proportion of satellite cells in the LA express AR and that this proportion is significantly greater in the LA compared to the CM. No sex differences were found between the proportions of satellite cells expressing AR in either muscle. Less colocalization of satellite cells and AR was seen in postnatal day 3 muscle than in postnatal day 1 muscle. In contrast, only negligible amounts of fibroblasts labeled with S100A4 express AR in either the LA or the CM. Together, findings support satellite cells, but not fibroblasts, as a candidate cell type involved in the sexual differentiation of the SNB neuromuscular system. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 448–454, 2013.  相似文献   

9.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) and their target muscles, bulbocavernosus and levator ani (BC/LA), constitute an androgen‐sensitive neuromuscular system. Testosterone regulates SNB soma size, SNB dendritic length, and BC/LA muscle mass in adult male rats. Recent evidence indicates that the cell death‐regulatory protein, Bcl‐2, may also play a role in adult neural plasticity. The present study examined whether gonadal hormones and/or the Bcl‐2 protein influence the morphology of the SNB neuromuscular system in adult B6D2F1 mice. In Experiment 1, adult wild‐type and Bcl‐2 overexpressing males were castrated and implanted with silastic capsules containing testosterone or left blank. Six weeks after castration, cholera toxin‐horseradish peroxidase was injected into the BC muscle to label SNB dendrites. Animals were killed 48 h later, and BC/LA muscle mass, SNB soma size, and SNB dendritic arbors were examined. In Experiment 2, wild‐type and Bcl‐2 overexpressing males were castrated or sham castrated, implanted with testosterone‐filled or blank capsules, and examined 12 weeks later. In both experiments, BC/LA muscle mass and SNB soma size were significantly reduced in castrates receiving blank capsules. Surprisingly, however, there was no effect of hormone manipulation on any of several measures of dendritic length. Thus, the dendritic morphology of SNB motoneurons appears to be relatively insensitive to circulating androgen levels in B6D2F1 mice. Bcl‐2 overexpression did not influence BC/LA muscle mass, SNB soma size, or SNB dendritic length, indicating that the morphology of this neuromuscular system and the response to castration are not altered by forced expression of the Bcl‐2 protein. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 403–412, 2002  相似文献   

10.
In rats, androgens in adulthood regulate the morphology of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), including the size of their somata and the length of their dendrites. There are conflicting reports about whether androgens exert similar influences on SNB motoneurons in mice. We castrated or sham-operated C57BL6J mice at 90 days of age and, thirty days later, injected cholera toxin conjugated horseradish peroxidase into the bulbocavernosus muscle (to label SNB motoneurons) on one side, and into intrinsic foot muscles contralaterally (to label motoneurons of the retrodorsolateral nucleus (RDLN)). Castrated mice had significantly smaller SNB somas compared to sham-operated mice while there were no differences in soma size of RDLN motoneurons. Dendritic length in C57BL6J mice, estimated in 3-dimensions, also decreased significantly after adult castration. In rats, androgens act directly through androgen receptors (AR) in SNB motoneurons to control soma size and nearly all SNB motoneurons contain AR. Since SNB somata in C57BL6J mice shrank after adult castration, we used immunocytochemistry to characterize AR expression in SNB cells as well as motoneurons in the RDLN and dorsolateral nucleus (DLN). A pattern of labeling matched that seen previously in rats: the highest percentage of AR-immunoreactive motoneurons are in the SNB (98%), the lowest in the RDLN (25%) and an intermediate number in the DLN (78%). This pattern of AR labeling is consistent with the possibility that androgens also act directly on SNB motoneurons in mice to regulate soma size in mice.  相似文献   

11.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

13.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

14.
Motoneuron death in the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) of the lumbar spinal cord is androgen regulated. As a result, many more SNB and DLN motoneurons die in perinatal female rats than in males, whereas treatment of newborn females with androgen results in a permanent sparing of the motoneurons and their target muscles. We previously observed that a neurotrophic molecule, ciliary neurotrophic factor (CNTF), also arrests the death of SNB motoneurons and their target musculature, at least in the short term. The present study compares the short- and long-term consequences of perinatal CNTF treatment on motoneuron number in the SNB, the DLN, and the retrodorsolateral nucleus (RDLN), a motor pool in the lower lumbar cord that does not exhibit hormone-regulated cell death. Female pups were treated with CNTF or vehicle alone from embryonic day 22 through postnatal day 6 (P6). Motoneuron number in each nucleus was then determined immediately after treatment on P7, or 10 weeks later (P77). CNTF treatment significantly elevated motoneuron number in the SNB and DLN on P7; the volume of SNB target muscles on P7 was also greater in the CNTF-treated group. These effects were transient, however, as motoneuron number and ratings of muscle size were not different in CNTF- and vehicle-treated females on P77. Perinatal CNTF treatment did not alter cell number in the RDLN at either age. The finding that effects of CNTF on SNB and DLN motoneuron number are short lived contrasts with the permanent effects of early androgen treatment, and has implications for molecular models of the actions of androgen and neurotrophic factors on the developing spinal cord. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
After axonal injury on postnatal day 14 (P14), but not P21, motoneurons in the spinal nucleus of the bulbocavernosus (SNB) do not display their normal response to circulating testosterone levels. This could result from a permanent disruption of communication between motoneurons and their testosterone-sensitive target muscles. We assessed the extent of reinnervation of one of these target muscles, the levator ani (LA) muscle, 5 months after the pudendal nerve was cut either on P14 or P21. The number of motoneurons innervating the LA in control and nerve cut animals was determined using retrograde labeling procedures. Functional recovery of the LA muscle was determined via the testing of its in situ contractile properties. Compared to control muscles, reinnervated LA muscles were smaller, had fewer muscle fibers, generated a lower maximum tetanic tension, and were more fatigable. In spite of the fact that fewer motoneurons reinnervated the LA muscle after nerve cut on P14 than on P21, there were no differences in the weight or contractile properties of the LA muscle between these two groups. These data suggest that motoneurons that survived injury on P14 innervated more muscle fibers than normal and exhibited a similar ability to functionally reinnervate the target muscle as those motoneurons that survived injury on P21.  相似文献   

16.
Changes in androgen levels can alter the structure of motoneurons in the spinal nucleus of the bulbocavernosus (SNB), a motor nucleus that innervates perineal muscles involved in copulatory behavior. While sexual activity can alter androgen levels in normal males, it has no effect on SNB motoneuron soma size or dendritic morphology (Beversdorf, Kurz, and Sengelaub, 1990). However, Breedlove (1997) reported reductions in the size of SNB somata, nuclei, and target muscles of copulating versus noncopulating castrated rats maintained on subphysiological testosterone. To reconcile the results obtained using intact versus implant paradigms, we tested the hypothesis that the implant/behavior paradigm could produce differences in hormone levels, potentially confounding sexual behavior effects on the morphology of this androgen-sensitive neuromuscular system. Young adult male rats were castrated and immediately given 5-mm Silastic implants containing crystalline testosterone. One week later, blood samples were drawn and the males were housed with receptive females (copulators) or nonreceptive females (noncopulators) or housed alone (singles). After 27 days, blood samples were drawn again, and SNB target muscles and spinal cords removed. No differences in target muscle weight or SNB somata and nuclei size were observed between copulators, noncopulators, or singles; as expected, all measures were significantly reduced relative to intact males. Radioimmunoassay showed that testosterone declined differentially over the course of the behavioral manipulation across groups, being greatest in copulators and least pronounced in single males. These data indicate that differences in sexual or housing experience can alter testosterone titers under these implant conditions, potentially confounding hormone-sensitive measures of morphology.  相似文献   

17.
In androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB), we investigated the interaction of BDNF (brain-derived neurotrophic factor) and testosterone to understand whether each factor gates the ability of the other to regulate androgen receptor expression and soma size, and whether each factor requires the presence of the other for its action. We axotomized SNB motoneurons and applied BDNF or PBS (phosphate-buffered saline) to the cut ends of the axons in rats that were castrated and treated with either testosterone or placebo. Control groups were either not castrated or not axotomized, or had intact SNB axons and were castrated and treated with testosterone or placebo. We found that testosterone determined the expression of nuclear androgen receptor, and this effect was enhanced by both BDNF and contact with the target muscles. The effect of BDNF on androgen receptor expression was seen only when testosterone was present. In the regulation of soma size, BDNF dominated. The application of BDNF completely compensated for the loss of testosterone in castrated males so that the testosterone effect on soma size was seen only in intact SNB motoneurons and in axotomized motoneurons treated with PBS. Moreover, testosterone increased androgen receptor and soma size in axotomized SNB motoneurons, indicating that testosterone can act on sites other than the target muscles of the SNB to regulate each of these. These results indicate that the regulation of androgen receptor by testosterone does not require BDNF, but the regulation of androgen receptor by BDNF does require testosterone. The regulation of soma size by BDNF does not require high expression of nuclear androgen receptor.  相似文献   

18.
The rat lumbar spinal cord contains a sexually dimorphic motor nucleus, the spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innnervate perineal muscles involved in copulatory reflexes. Dendritic development of SNB motoneurons is biphasic and androgen dependent. During the first 4 postnatal weeks, SNB dendrites grow exuberantly, and subsequently retract to mature lengths by 7 weeks of age. After early postnatal castration, SNB dendrites fail to grow, and testosterone replacement restores this growth. In other systems, testosterone and its metabolites, dihydrotestosterone and estrogen, are important for somatic and neural sexual differentiation. The purpose of the present study was to examine the effects of castration and dihydrotestosterone or estrogen replacement on the growth of SNB motoneuron somata and dendritic arbors. Male rat pups were castrated on postnatal (P) day 7 and treated daily with either dihydrotestosterone propionate (DHTP; 2 mg) or estradiol benzoate (EB; 100 μg) until P28 or P49. By using cholera toxin horseradish peroxidase (BHRP) histochemistry, the soma size, dendritic length, dendritic extent, and arbor area of BHRP-labeled SNB motoneurons were measured and analyzed. Both DHTP and EB treatment supported the initial exuberant growth of SNB dendrites through P28, but EB treatment was ineffective in maintaining mature, adult lengths at P49. The possible sites of hormone action and functional implications of these hormonal treatments are discussed. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.  相似文献   

20.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. SNB motoneurons and their perineal target muscles are present in adult males but reduced or absent in females. This sexual dimorphism is due to the presence of androgen during development; females treated with testosterone (T) perinatally have a masculine SNB system. To assess whether masculinization of the SNB could involve the conversion of testosterone into its active metabolites, dihydrotestosterone (DHT) and estrogen, we examined the development of the SNB in females treated perinatally with estrogen alone or in combination with dihydrotestosterone. Counts of motoneurons in the developing SNB in all groups showed the typical prenatal increase followed by a differential postnatal decline; the incidence of degenerating cells reflected this decline. Motoneuron numbers and the frequency of degenerating cells in females treated with estrogen (E) alone did not differ from those of normal females, with both groups losing large numbers of motoneurons and having a high incidence of degenerating cells. In contrast, females treated with both estrogen and dihydrotestosterone did not show the female-typical decline in motoneuron number and had a low, masculine incidence of degenerating cells. By postnatal day 10, females treated with estrogen and dihydrotestosterone had a fully masculine SNB motoneuron number, suggesting that dihydrotestosterone alone or in conjunction with estrogen may be involved in the development of the sexually dimorphic SNB system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号