首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anne Kemp 《Journal of morphology》2013,274(10):1085-1089
The connective tissue that links the bones of the mandible in the Australian lungfish, Neoceratodus forsteri, has been described as an intermandibular cartilage, and as such has been considered important for phylogenetic analyses among lower vertebrates. However, light and electron microscopy of developing lungfish jaws demonstrates that the intermandibular tissue, like the connective tissue that links the bones of the upper jaw, contains fibroblasts and numerous bundles of collagen fibrils, extending from the trabeculae of the bones supporting the tooth plates. It differs significantly in structure and in staining reactions from the cartilage and the bone found in this species. In common with the cladistian Polypterus and with actinopterygians and some amphibians, lungfish have no intermandibular cartilage. The connective tissue linking the mandibular bones has no phylogenetic significance for systematic grouping of lungfish, as it is present in a range of different groups among lower vertebrates. J. Morphol. 274:1085–1089, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Previous accounts of the dentition of the Carboniferous dipnoan Uronemus have stressed the significance of the scattered small denticles. These, together with the marginal teeth and ridges, have been interpreted as primitive characters of the dipnoan dentition shared with three other genera: the Devonian Uranlophus and Griphognathus and the Carboniferous to Permian Conchopoma. Genera with tooth plates have been considered to be a monophyletic group in which tooth plates are a derived character; Uronemus has been excluded from this group in all previous investigations dealing with the significance of the dentition for determining relationships among dipnoans. The macromorphology of the dentition of Uronemus has been re-examined and correlated with the histology of all the dental tissues. Optical study of thin sections and scanning electron microscope study of the adjacent cut surfaces has shown that the hard, wear-resistant dentine of the teeth and ridges is petrodentine. The arrangement, growth, wear and histology of the dental tissues have been compared with those of denticulated and tooth-plated genera. The arrangement of new teeth relative to the tooth ridge, the pattern of wear along the ridge, and the type of dentine and its growth indicate that the dentition of Uronemus is best interpreted as a tooth plate with one long lingual tooth ridge and reduced lateral tooth rows. Therefore the marginal tooth ridges are not considered to be homologous with those of denticulate dipnoans such as Uranolophus. The presence of petrodentine, a tissue type only found in forms with tooth plates, is consistent with the view that the dentition is derived by modification of a radiate tooth plate. The denticles covering restricted regions of the palate and lower jaw are considered to have been a secondary acquisition. The suggestion that Conchopoma is a close relative of Uronemus is not accepted, and possible new relationships have been proposed. New data on Scaumenacia and Phaneropleuron, two other genera previously compared with Uronemus, are presented. Rhinodipterus, a form with elongate lingual ridges, is also discussed. Phaneropleuron is shown to have radiate tooth plates and not a marginal row of conical teeth as previously described. It is proposed that the tooth plate of Uronemus is derived from a dipterid type of plate. A discussion of some of the other factors involved in determining the relationships of the genus is given.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In common with the embryos of other anamniotes, young of the Australian lungfish, Neoceratodus forsteri, have ciliated cells in the epidermis. These first appear at stage 28, ˜ 10 days before hatching, and develop progressively to a peak in numbers and in activity at stage 44, just after hatching. After this point, ciliary action in the epidermal cells slowly declines, and cilia disappear completely from the outer surface of the hatchling by stage 52. Cilia are lost earlier from the oral epithelium, between stages 45 and 46, and from the epithelium covering the gills and lining the operculum at stage 51, although they are retained in the nares and in the cavity of the olfactory organ. To assess possible functions for the ciliated epidermis in lungfish hatchlings, the presence of cilia in the epidermis of young N. forsteri is compared with landmarks of development. The ciliated epidermal cells are not associated with movements of the embryo within the egg capsule, nor are they a part of a feeding mechanism. They are not related to oxygen uptake. The ciliated epidermis appears to function as a mechanism for clearing the animal of particles and settling organisms before hatching, when the egg membranes have developed holes, and after hatching, when the young fish is living among the submerged rootlets of trees growing on the river bank or in dense stands of aquatic plants. The function of a ciliated epidermis in N. forsteri hatchlings in relation to microhabitat is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Observations on the sequence and timing of gingival tooth eruption are reported for six species of Madagascar lemurs. Complete sequences of eruption were obtained for the deciduous dentition, and partial to complete sequences were recorded for the permanent dentition. In Cheirogaleus medius and in four species of the genus Lemur, the deciduous teeth erupt in front-to-back sequence, with the toothcomb emerging near birth as an integrated complex. In Propithecus verreauxi the same pattern is exhibited, but the small peglike lower canine and dp3 erupt last. Eruption of the permanent dentition in Lemur species takes place in two distinct stages. In the first stage the upper incisors, toothcomb, and first two molars penetrate the gingiva. After an interval of 3 to 4 months, the remaining permanent teeth erupt. Deciduous premolars erupt when young animals are being weaned. The eruption of the deciduous toothcomb appears unrelated to feeding or grooming behavior. In L. catta and L. fulvus, the first stage of permanent tooth eruption occurs at approximately 6 months of age, when the growth rate slows down and (in wild populations) the rainy season is ending. This suggests that eruption of the anterior molars is timed to coincide with a shift from a more frugivorous to a more folivorous dietary regime, which occurs during the dry season. No further tooth eruption occurs until approximately 1 year of age, when the growth rate increases and the rainy season returns for wild populations. Thus, the second wave of permanent tooth eruption in these species again appears linked to changing climatic conditions which lead to a shift in dietary preferences.  相似文献   

5.
Kemp A 《Tissue & cell》2003,35(6):401-426
While the lungfish dentition is partially understood as far as morphology and light microscopic structure is concerned, the ultrastructure is not. Each tooth plate is associated with a dental lamina that develops from the inner layer of endodermal cells that form the oral epithelium. Dentines, bone and cartilage of the jaws differentiate from mesenchyme cells aggregating beneath the oral endothelium. Enamel, in the developing and in the mature form, has similarities to that of other early vertebrates, but unusual characters appear as development proceeds. Ameloblasts are capable of secreting enamel, and, with mononuclear osteoclasts, of remodelling the bone below the tooth plate. The forms of dentine, all based largely on an extracellular matrix of collagen and mineralised with biological apatite, differ from each other and from the underlying bone in the ultrastructure of associated cells and in the mineralised extracellular matrices produced. Cell processes emerging from the odontoblasts and from the osteoblasts vary in length, degree of branching and of anastomoses between the processes, although all of the cell types have large amounts of rough endoplasmic reticulum. Mineralisation of the extracellular matrices varies among the enamel, dentines and bone in the tooth plate. In addition, the development of the hard tissues of the tooth plates indicates that many of the similarities in fine structure of the dentition in lungfish, to tissues in other fish and amphibia, apparent early in development, disappear as the dentition matures.  相似文献   

6.
Lungfish, or dipnoans, have a history spanning over 400 million years and are the closest living sister taxon to the tetrapods. Most Devonian lungfish had heavily ossified endoskeletons, whereas most Mesozoic and Cenozoic lungfish had largely cartilaginous endoskeletons and are usually known only from isolated tooth plates or disarticulated bone fragments. There is thus a substantial temporal and evolutionary gap in our understanding of lungfish endoskeletal morphology, between the diverse and highly variable Devonian forms on the one hand and the three extant genera on the other. Here we present a virtual cranial endocast of Rhinodipterus kimberleyensis, from the Late Devonian Gogo Formation of Australia, one of the most derived fossil dipnoans with a well-ossified braincase. This endocast, generated from a Computed Microtomography (µCT) scan of the skull, is the first virtual endocast of any lungfish published, and only the third fossil dipnoan endocast to be illustrated in its entirety. Key features include long olfactory canals, a telencephalic cavity with a moderate degree of ventral expansion, large suparaotic cavities, and moderately enlarged utricular recesses. It has numerous similarities to the endocasts of Chirodipterus wildungensis and Griphognathus whitei, and to a lesser degree to ''Chirodipterus'' australis and Dipnorhynchus sussmilchi. Among extant lungfish, it consistently resembles Neoceratodus more closely than Lepidosiren and Protopterus. Several trends in the evolution of the brains and labyrinth regions in dipnoans, such as the expansions of the utricular recess and telencephalic regions over time, are identified and discussed.  相似文献   

7.
The large elasmoid scales of the Australian lungfish, Neoceratodusforsteri, are formed within the dermis by unpigmented scleroblasts, growing within a collagenous dermal pocket below a thick glandular epidermis. The first row of scales, on the trunk of the juvenile lungfish, appears below the lateral line of the trunk, single in this species, at around stage 53. The scales, initially circular in outline, develop anteriorly and posteriorly from the point of initiation in the mid‐trunk region, and rows are added alternately below the line, and above the line, until they reach the dorsal or ventral midline, or the margins of the fins. Scales develop later on the ventral surface of the head, from a separate centre of initiation. Scales consist of three layers, all produced by scleroblasts of dermal origin. The outermost layer of interlocking plates, or squamulae, consists of a mineralised matrix of fine collagen fibrils, covered by unmineralised collagen and a single layer of cells. Squamulae of the anterior and lateral surfaces are ornamented with short spines, and the mineralised tissue of the posterior surface is linked to the pouch by collagen fibrils. The innermost layer, known as elasmodin, consists of bundles of thick collagen fibrils and cells arranged in layers. An intermediate layer, made up of collagen fibrils, links the outer and inner layers. The elasmoid scales of N. forsteri can be compared with scale types among other osteichthyan groups, although the cellsand canaliculi in the mineralised squamulae bear littleresemblance to typical bone. J.Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Distribution of ADH, ALP, FBALD, GAPDH, G3PDH, G6PDH, GPI, LDH, MDH, PGM, and SOD was identified in retina, heart, muscle, liver, kidney, gills, brain, gut, lung and ovary of the African lungfish. Data are compared with patterns previously described in dipnoans and other vertebrates. The number of loci expressed for all enzymes was found to be similar to those of diploid Actinopterygii. Differences in the number of loci expressed in Amphibia were found for ALP, sG3PDH, GPI, LDH, MDH and SOD. Differences in tissue distribution were noted in ALP due to the absence of an intestinal-specific form typical of teleostean fish, amphibians, reptiles and birds, and in GPI and MDH, due to the tissue expression, as in primitive fish. There were also differences in LDH, where a third locus (LDH-C*) was expressed in the gills of Protopterus annectens and not in the retina or liver tissues, as in teleosts. LDH-A4 was most common in all the tissues. Major differences were noted in the tissue patterns of protein expression in the three dipnoans compared. As expected, the least divergence was found between the two species belonging to the same family (Lepidosirenidae). The highest index of divergence was observed between Neoceratodus forsteri and Lepidosiren paradoxa, belonging to the families Ceratontidae and Lepidosirenidae, respectively. The divergence is revealed by changes at the enzyme and morphological levels. These results suggest that P. annectens occupies an interesting systematic position, its biochemical characteristics distinguishing it from N. forsteri, L. paradoxa, the advanced fish and amphibians.  相似文献   

9.
The aim of the present study was to define at the light-microscopic level expression of prolactin and somatotropin material in the pituitary gland of the Australian lungfish, Neoceratodus forsteri, by use of polyclonal antibodies against ovine prolactin (oPRL) and bovine somatotropin (bSTH). Substances immunologically related to mammalian oPRL as well as bSTH were detected in two morphologically different cell types in the distal lobe, corresponding to the acidophilic cells. The specificity of the antibodies was initially confirmed in a porcine tissue control system. First, our absorption studies confirm that in Neoceratodus the anti-oPRL identifies part of an oPRL-like molecule different from bSTH. Secondly, the anti-bSTH identifies both part of a bSTH-like molecule proper to bovine and Neoceratodus STH, and part of a bSTH-like molecule having antigenic determinants in common with both bSTH and oPRL. This part of the oPRL is, however, not shared with the Neoceratodus PRL as revealed by the anti-oPRL. Altogether these observations support the concepts: (1) that mammalian PRL and STH, or part of those, were established early in evolution, and (2) that dipnoans as living sarcopterygians have an ancestor in common with the early amphibians. The exact nature and physiological functions of the substances detected remain to be defined.  相似文献   

10.
11.
The rate of oxygen consumption throughout embryonic development is used to indirectly determine the ‘cost’ of development, which includes both differentiation and growth. This cost is affected by temperature and the duration of incubation in anamniote fish and amphibian embryos. The influences of temperature on embryonic development rate, respiration rate and energetics were investigated in the Australian lungfish, Neoceratodus forsteri, and compared with published data. Developmental stage and oxygen consumption rate were measured until hatching, upon which wet and dry gut-free masses were determined. A measure of the cost of development, the total oxygen required to produce 1 mg of embryonic dry tissue, increased as temperature decreased. The relationship between the oxygen cost of development (C, ml mg−1) and dry hatchling mass (M, mg) in fishes and amphibians is described by C = 0.30 M0.22 ± 0.13 (95% CI), r 2 = 0.52. The scaling exponent indicates that the cost of embryonic development increases disproportionally with increasing hatchling mass. At 15 and 20°C, N. forsteri cost of development is significantly lower than the regression mean for all species, and at 25°C is lower than the allometrically scaled data set. Unexpectedly, incubation of N. forsteri is long, despite natural development under relatively warm conditions, and may be related to a large genome size. The low cost of development may be associated with construction of a rather sluggish fish with a low capacity for aerobic metabolism. The metabolic rate is lower in N. forsteri hatchlings than in any other fishes or amphibians at the same temperature, which matches the extremely low aerobic metabolic scope of the juveniles.  相似文献   

12.
The histology of tooth plates of Sagenodus inaequalis has been investigated to obtain information on the histogenesis of the tissue. The histological mechanisms of growth and replacement of the tooth plate are described in terms of an increase in area of the tooth plate by addition of denticles to the lateral margins of the ridges, replacement of worn dentine at the tritoral surface by basal growth of dentine and invasive growth of dentine into the surrounding bone at the anterior and medial margins. The histogenesis of a specialized character for dipnoans is described, namely hypermineralized dentine, or petrodentine, within the tooth plates. This has placed an advanced character further back in the phylogenetic organization of dipnoans than was previously recognized. The implications of these observations are discussed in relation to proposed phylogenies and previous observations on tooth plates of other dipnoans. It is concluded that Sagenodus inaequalis shared a common ancestor with both the ceratondontids and the lepidosirenids. A sequence is proposed for the phyletic relationship of tooth plate-bearing dipnoans. From a consideration of the features of histogenesis of this specialized dentine, the alternative terminologies are reviewed and petrodentine (Lison 1941) chosen for the hypermineralized dentine and syndentine (Thomasset 1928) as the collective term for the entire mass of dentine in the tooth plate.  相似文献   

13.
The study of juvenile remains of Paedotherium Burmeister from Cerro Azul Formation (La Pampa Province, Argentina; late Miocene) is presented. Upper and lower deciduous dentition (or permanent molars supposed to be associated with non-preserved deciduous teeth) are recognised. Several ontogenetic stages are distinguished among juveniles, according to the degree of wear and the replaced deciduous teeth. Besides, some morphological and metrical differences are observed along the crown height. Deciduous cheek teeth are high-crowned and placed covering the apex of the corresponding permanent tooth. The height of the crown and the degree of wear allow establishing the pattern of dental replacement of deciduous and permanent premolars in a posterior–anterior direction (DP/dp4–2 and P/p4–2), as well as the eruption of M/m3 before DP/dp4 is replaced. Some of the studied remains are recognised as young individuals of Tremacyllus Ameghino, but with complete permanent dentition, which leads to propose a different timing in the dental replacement with respect to Paedotherium; they also allow the establishment of an opposite premolar eruption pattern, from P/p2 to P/p4. This knowledge of the deciduous dentition of Paedotherium suggests the need of revising the morphological and metrical characters previously used for defining species within this taxon.  相似文献   

14.
The Australian lungfish, Neoceratodus forsteri, exists as remnant natural populations in two rivers of south-east Queensland, Australia, and several translocated populations. Lungfish habitats have been impacted by agriculture and forestry, alien plants and fish and by river impoundment and regulation of flows. The species has been listed as vulnerable under Australian Commonwealth legislation. A proposal to construct Traveston Crossing Dam on the free-flowing main channel of the upper Mary River could seriously threaten the lungfish. The dam can be stopped by Commonwealth legislation if important populations of lungfish in the Mary River are likely to be significantly impacted by the new dam. This paper assembles evidence that impoundment of the Mary River and regulation of river flows are likely to decrease and fragment important lungfish populations, disrupt the breeding cycle, reduce juvenile recruitment, and isolate and decrease habitat availability/quality to such an extent that the species is likely to decline. Proposed mitigation strategies include fish transfer facilities, provision of flow releases from the dam (environmental flows) to sustain lungfish habitat and breeding downstream, and translocation of hatchery-reared juvenile lungfish into suitable natural habitats. These mitigation efforts may not be sufficient to secure the genetic diversity and long-term viability of lungfish populations in the Mary River.  相似文献   

15.
Experimental evidence that the neural crest participates in tooth development in any osteichthyan fish has so far been lacking. Using vital dye cell-lineage tracking, we demonstrate that trigeminal stream neural crest cells contribute to the dental papilla of developing teeth in the Australian lungfish. Trigeminal neural crest cells labeled before migration have been traced during the earliest stages of tooth development. Neural crest cells from a single midbrain locus were relocated as ectomesenchyme in all developing teeth of the lungfish regardless of their topographical position in the dentition. These cells remain at the dental papilla interface and become cells committed to dentine production. Our findings provide the first cell-lineage evidence that cranial neural crest is fated to ectomesenchyme for tooth development and dentine production in the living sister-group to tetrapods. This shows that cranial neural crest contribution to teeth is conserved from this node on the tetrapod phylogeny.  相似文献   

16.
The chimaeroid holocephalian fishes are distinguished among extant chondrichthyans by the possession of three pairs of tooth plates, evergrowing and partially hypermineralized, that are not shed and replaced like the teeth of living elasmobranchs. Although derivation of the chimaeroid tooth plate from the fusion of members of a plesiomorphic chondrichthyan tooth family has been proposed, evidence for this hypothesis has been lacking. A new analysis of the development and structure of the tooth plates in Callorhinchus milii (Holocephali, Chimaeriformes) reveals the compound nature of the tooth plates in a chimaeroid fish. Each tooth plate consists of an oral and aboral territory that form independently in the embryo and maintain separate growth surfaces through life. The descending lamina on the aboral surface of the tooth plate demarcates the growth surface of the aboral territory. Comparison with the tooth plates of Chimaera monstrosa indicates that compound tooth plates may be a feature of all chimaeroids in which a descending lamina is present. The tooth plates in these fishes represent the fusion of two members of a reduced tooth family. The condition of the tooth plates in C. milii is plesiomorphic for chimaeroids and is of evolutionary significance in that it provides further evidence to support a lyodont dentition in chimaeroid fishes similar to that found in other chondrichthyans. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Tooth plate formation in the Queensland lungfish, Neoceratodus forsteri, Krefft begins with simple groups of isolated cusps, three in each tooth plate. The cusps fuse in ridges radiating from a point situated posterolingually. During growth, cusps are added to the labial ends of the ridges, and more ridges are added posteriorly, giving a total of seven in each tooth plate. Each tooth grows in thickness by the addition of layers of material, in line with the new cusps, beneath the tooth plate. The tooth plate grows outwards and is resorbed from the inner angle at the same time. The crushing surface is formed by the growth of cusps between the ridges. Angles between the ridges become progressively smaller, and angles between more posterior ridges are consistently less than between more anterior ridges. Similar but less pronounced changes in angles between ridges occur in a fossil genus, Sagenodus inaequalis, examined for comparison.
Vomerine teeth grow in the same way, by fusion of isolated cusps and the addition of new cusps to one end (labial) of the tooth plate. Layers of material are also added beneath the tooth plate. The vomerine tooth plates are initially low-based with long cusps but develop into high-based low cusped incisiform tooth plates in fully grown adults.
The labial dentition of the lower jaw starts to develop like the vomerine teeth, but degenerates by stage (vi) of tooth development. The single medial tooth is resorbed even earlier.
The pattern of tooth plate formation described in this paper is consistent with illustrations published by Semon (1901) and Greil (1908, 1913) but the inferred developmental processes are different.
Implications of the results for the Zahnreihe hypothesis of Edmund and for the phylogeny of Dipnoi are discussed.  相似文献   

18.

Background  

One of the greatest challenges facing the early land vertebrates was the need to effectively interpret a terrestrial environment. Interpretation was based on ocular adaptations evolved for an aquatic environment millions of years earlier. The Australian lungfish Neoceratodus forsteri is thought to be the closest living relative to the first terrestrial vertebrate, and yet nothing is known about the visual pigments present in lungfish or the early tetrapods.  相似文献   

19.
A. Kemp 《Tissue & cell》2014,46(5):397-408
Many fossil lungfish have a system of mineralised tubules in the dermis of the snout, branching extensively and radiating towards the epidermis. The tubules anastomose in the superficial layer of the dermis, forming a plexus consisting of two layers of vessels, with branches that expand into pore canals and flask organs, flanked by cosmine nodules where these are present. Traces of this system are found in the Australian lungfish, Neoceratodus forsteri, consisting of branching tubules in the dermis, a double plexus below the epidermis and dermal papillae entering the epidermis without reaching the surface. In N. forsteri, the tubules, the plexus and the dermal papillae consist of thick, unmineralised connective tissue, enclosing fine blood vessels packed with lymphocytes. Tissues in the epidermis and the dermis of N. forsteri are not associated with deposits of calcium, which is below detectable limits in the skin of the snout at all stages of the life cycle. Canals of the sensory line system, with mechanoreceptors, are separate from the tubules, the plexus and the dermal papillae, as are the electroreceptors in the epidermis. The system of tubules, plexus, dermal papillae and lymphatic capillaries may function to protect the tissues of the snout from infection.  相似文献   

20.
扁圆吻鲴下咽齿的个体发生可分为三个阶段:初齿期、过渡齿期和成齿期。初步期符合鲤科鱼类的一般规律;过渡齿期相当延长,产生全部齿位,6或7枚齿,齿的发生存在两种类型;成齿与幼齿的替换规律完全不同,发育进入成齿阶段后,主行齿由奇数齿位与偶数齿位交错替换转变为相二枚齿进行替换,替换公式为1-4,2-5,3-6或1-4-7,2-5,3-6(主行齿6枚或7枚),全部替换一次分三列替换波完成,可将扁圆吻鲴下咽齿的发育模式视为新的类型,副行齿在过渡齿期出现,与主行齿的发展模式不同,替换形式始终为相令齿位交错进行,本文还探讨了咽骨的发育及其对下咽发生的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号