首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
According to the radial loop model of chromosome organization, a major role in the formation and maintenance of chromosomes is played by the residual structures (the nuclear matrix in interphase nuclei and the chromosome scaffold in metaphase chromosomes). However, in vivo microscopy has recently revealed that the components of these “static” structures are highly mobile and continuously exchanged between specific target sites and the nucleoplasm or cytoplasm. This contradiction between predicted stability and observed dynamics led us to reexamine the principles underlying the association of proteins with residual structures. In the present paper, we have analyzed the association of two perichromosomal layer proteins, pKi-67 and B23, with the residual structures. The results show that these two proteins are associated with residual structures throughout the cell cycle; only those structures change that contain proteins precipitated by 2 M NaCl (nucleoli, perichromosomal layer, prenucleolar bodies, cytoplasm of mitotic cells). Both pKi-67 and B23 remain associated with the nuclear matrix even when they are translocated to nucleoplasmic foci due to inhibitor action or hypotonic treatment. However, in most cases it remains possible to extract a structurally visible protein fraction with 2 M NaCl (protein distributed in nucleoplasm). One may suppose that the protein fraction associated with residual structures includes molecules interacting with their binding sites at the moment of permeabilization, while the free proteins are extracted (i.e., during the interaction with binding sites, these proteins form salt-resistant complexes; however, on diffusion the same proteins are extractable by the high-salt solution). The residual structures may be considered as a “snapshot” of all proteins transiently (or statically) bound to their target sites at the moment of permeabilization. The article is published in the original.  相似文献   

3.
4.
A proteomic study of the arabidopsis nuclear matrix   总被引:7,自引:0,他引:7  
The eukaryotic nucleus has been proposed to be organized by two interdependent nucleoprotein structures, the DNA-based chromatin and the RNA-dependent nuclear matrix. The functional composition and molecular organization of the second component have not yet been resolved. Here, we describe the isolation of the nuclear matrix from the model plant Arabidopsis, its initial characterization by confocal and electron microscopy, and the identification of 36 proteins by mass spectrometry. Electron microscopy of resinless samples confirmed a structure very similar to that described for the animal nuclear matrix. Two-dimensional gel electrophoresis resolved approximately 300 protein spots. Proteins were identified in batches by ESI tandem mass spectrometry after resolution by 1D SDS-PAGE. Among the identified proteins were a number of demonstrated or predicted Arabidopsis homologs of nucleolar proteins such as IMP4, Nop56, Nop58, fibrillarins, nucleolin, as well as ribosomal components and a putative histone deacetylase. Others included homologs of eEF-1, HSP/HSC70, and DnaJ, which have also been identified in the nucleolus or nuclear matrix of human cells, as well as a number of novel proteins with unknown function. This study is the first proteomic approach towards the characterization of a higher plant nuclear matrix. It demonstrates the striking similarities both in structure and protein composition of the operationally defined nuclear matrix across kingdoms whose unicellular ancestors have separated more than one billion years ago.  相似文献   

5.
Based on solubility properties, the human myeloid cell nuclear differentiation antigen exists as at least two distinct populations. Most is easily extracted from isolated nuclei in 0.35 M NaCl, while 20 percent resists such treatment. Compared to undigested nuclei, both the amount of myeloid cell nuclear differentiation antigen (MNDA) released from nuclei after DNase I treatment and the amount resisting further extraction in 0.35 M NaCl increased after DNA was digested with DNase I. Under these conditions, there was a concomitant decrease in the amount of MNDA that was extractable with 0.35 M NaCl. Mixing nuclear protein extracts that contain MNDA with nuclei from cells that do not express this protein demonstrated that the MNDA redistributes from the freely soluble form to the nuclear residual fraction as a consequence of DNase I digestion. These data are consistent with a model in which the amount of MNDA that is tightly bound to salt-washed nuclei is held constant in the presence of an excess of unassociated MNDA in the nucleus, and that the level of MNDA binding to this nuclear fraction increases in proportion to the extent of DNA damage resulting from DNase I digestion.  相似文献   

6.
X3, a monoclonal antibody of unusual specificity, is described. This antibody reacts with one or more cytokeratin polypeptides and also reacts with an avian (chicken, quail) nuclear antigen that appears to be present in all cell types (chicken) tested, although with variable staining pattern and intensity. This antigen is distinct from the cytokeratins but does have an epitope in common with this class of proteins. It disappears from the nucleus during the early stages of cell division and reappears during anaphase as a granular cytoplasmic structure. In late telophase the antigen is relocated in the nucleus. This antigen, which we have designated as avian-specific nuclear antigen (AVNA), is not associated with chromatin or ribonucleoproteins. From immunoblotting experiments on chicken fibroblast nuclei, AVNA is probably a complex composed of one or several polypeptides, one of which has a molecular weight of approximately 60 kD. The proteins were identified as nuclear matrix proteins rather than pore complex-lamina proteins by immunoblotting experiments on the purified nuclear matrix of chicken erythrocytes. The major polypeptide had a molecular weight of 60 kD and the minor polypeptide a molecular weight of 69 kD.  相似文献   

7.
李园园  陆长德 《生命科学》2003,15(3):143-146
增殖细胞核抗原(proliferating cell nuclear antigen,PCNA)是一种生长调控蛋白,在DNA复制、修复、细胞周期调控、基因外遗传(epigenetic inheritance)等事件的协同机制中发挥重要功能。PCNA的表达调控发生在多个层次,涉及ATFl、CREB、RFXl、p53、E2F等转录因子以及内含子指导的反义RNA等等。  相似文献   

8.
9.
We have examined the composition and ultrastructure of the nuclear periphery during in vitro myogenesis of the rat myoblast cell line, L6E9. Immunofluorescence labelling and immunoblotting showed that lamins A/C and B were all present in undifferentiated cells, but that they increased significantly before extensive cell fusion had occurred, with lamins A/C increasing proportionately more. Electron microscopic observations were consistent with these results, showing an increase in the prominence of the lamina during differentiation. On the other hand, immunofluorescence labelling suggested that the P1 antigen began to disappear from the nuclear periphery as the cells were fusing, after the increase in lamin quantity, and was no longer detectable in multinucleated cells. Unexpectedly, however, P1 was readily detected in isolated nuclei, whether prepared from myoblast or differentiated cultures, as well as in both myoblast and myotube nuclear matrices. It appears probable, therefore, that the fading of P1 labelling is due to masking of the epitope by a soluble factor recruited to the nuclear periphery as cells differentiate. These data, together with evidence that the genome is substantially rearranged during L6E9 myogenesis [Chaly and Munro, 1996], suggest that L6E9 cells are a useful model system in which to study the interrelationship of nuclear envelope organization, chromatin spatial order, and nuclear function. © 1996 Wiley-Liss, Inc.  相似文献   

10.
The human myeloid cell nuclear differentiation antigen (MNDA) is a protein of 406 amino acids that is expressed specifically in granulocytes, monocytes and earlier stage cells of these lineages. Degenerate oligonucleotides that could encode regions of MNDA amino acid sequence were used to amplify the MNDA cDNA sequence using the polymerase chain reaction. The amplified cDNA product was sequenced to confirm that it encoded the MNDA protein. It was then used as a probe to isolate five clones from a human bone marrow lambda gt10 cDNA library. A clone containing a 1,672 base pair cDNA insert was sequenced and found to encode the entire MNDA open reading frame, as well as 5' and 3' untranslated regions. The primary structure of the MNDA contains extensive regions of sequence similarity with the protein products of the interferon-inducible genes: 204 and interferon regulatory factor 2. In addition, a 12-base sequence matching the interferon-stimulated response element consensus sequence [GAAAN(N)GAAA] is located in the 5' untranslated region of the MNDA cDNA. The 1.8 kb MNDA mRNA was detected only in cells that express the antigen and the level of MNDA mRNA was elevated in cells treated with either recombinant or natural interferon alpha. The MNDA mRNA was not induced by interferon alpha in cells that do not exhibit a constitutive level of the MNDA mRNA. The MNDA contains sequence motifs found in gene regulatory proteins. The expression and the primary structure of the MNDA indicates that it plays a role in the granulocyte/monocyte cell-specific response to interferon.  相似文献   

11.
Ko R  Bennett SE 《DNA Repair》2005,4(12):239-1431
Uracil residues arise in DNA by the misincorporation of dUMP in place of dTMP during DNA replication or by the deamination of cytosine in DNA. Uracil-DNA glycosylase initiates DNA base excision repair of uracil residues by catalyzing the hydrolysis of the N-glycosylic bond linking the uracil base to deoxyribose. In human cells, the nuclear form of uracil-DNA glycosylase (UNG2) contains a conserved PCNA-binding motif located at the N-terminus that has been implicated experimentally in binding PCNA. Here we use purified preparations of UNG2 and PCNA to demonstrate that UNG2 physically associates with PCNA. UNG2 co-eluted with PCNA during size exclusion chromatography and bound to a PCNA affinity column. Association of UNG2 with PCNA was abolished by the addition of 100 mM NaCl, and significantly decreased in the presence of 10 mM MgCl(2). The functional significance of the UNG2.PCNA association was demonstrated by UNG2 activity assays. Addition of PCNA (30-810 pmol) to standard uracil-DNA glycosylase reactions containing linear [uracil-(3)H]DNA stimulated UNG2 catalytic activity up to 2.6-fold. UNG2 activity was also stimulated by 7.5 mM MgCl(2). The stimulatory effect of PCNA was increased by the addition of MgCl(2); however, the dependence on PCNA concentration was the same, indicating that the effects of MgCl(2) and PCNA on UNG2 activity occurred by independent mechanisms. Loading of PCNA onto the DNA substrate was required for stimulation, as the activity of UNG2 on circular DNA substrates was not affected by the addition of PCNA. Addition of replication factor C and ATP to reactions containing 90 pmol of PCNA resulted in two-fold stimulation of UNG2 activity on circular DNA.  相似文献   

12.
Summary Variations in the (2′–5′) oligoadenylate synthetase (2–5 A synthetase) level were examined prior to and during the differentiation in culture of the human monocyte cell line U937 and the promyelocytic cell line HL60 in an attempt to reveal whether the enzyme is actively involved in hematopoietic cell maturation. The basal level of this enzyme was much higher in U937 than in HL60 cells. The activity of 2–5 A synthetase was enhanced in both cell lines in response to α, β interferons. During cell differentiation, ten markers were measured. The level of the enzyme rose during the process of cellular maturation in both cell lines. The 2–5 A synthetase activity observed in differentiated HL60 and U937 cells was comparable to that observed in mature normal granulocytes and monocytes respectively. Induction of U937 differentiation by chemicals was associated with detectable production of IFN. The increase in enzyme activity observed was mostly dependent on endogenous production of interferon, since it was inhibited by interferon antibodies. Kinetic studies showed that in U937 cells 2–5 A synthetase was expressed prior to several of the differentiation markers. The rise in the enzyme's level observed during the differentiation of HL60 cells was independent of endogenous production of interferon, since it was not inhibited by the addition of anti-interferon antibodies. These results suggest that different biochemical and molecular mechanisms are responsible for the induction of 2–5 A synthetase observed during the differentiation of hematopoietic cells. In any case, 2–5 A synthetase can be considered as a biochemical marker of cell status and differentiation in hematopoietic cells.  相似文献   

13.
14.
15.
Summary Proliferating cell nuclear antigen mRNA levels were determined in human diploid fibroblasts as they progressed through the cell cycle. PCNA message levels were low at G0, gradually increased following entrance into G1, peaked at G1/S, and declined during S phase. PCNA mRNA was determined to have a half life of 12 hours when cells were blocked at the G1/S interface. PCNA protein levels increased two- to three-fold as cells moved from G0 to S phase.  相似文献   

16.
Human osteosarcoma MG-63 cells were induced into differentiation by 5 mmol/L hexamethylene bisacetamide (HMBA). Their nuclear matrix proteins (NMPs) were selectively extracted and subjected to two-dimensional gel electrophoresis analysis. The results of protein patterns were analyzed by Melanie software. The spots of differentially expressed NMPs were excised and subjected to in situ digestion with trypsin. The maps of peptide mass fingerprinting were obtained by MALDI-TOF-MS analysis, and were submitted for NCBI database searches by Mascot tool. There were twelve spots changed remarkably during the differentiation induced by HMBA, nine of which were identified. The roles of the regulated proteins during the MG-63 differentiation were analyzed. This study suggests that the induced differentiation of cancer cells is accompanied by the changes of NMPs, and confirms the presence of some specific NMPs related to the cancer cell proliferation and differentiation. The changed NMPs are potential markers for cancer diagnosis or targets for cancer therapy.  相似文献   

17.
The early diagnosis of colorectal cancer (CRC) is central for effective treatment, as prognosis is directly related to the stage of the disease. Development of tumor markers found in the blood from patients, which can detect CRC at an early stage, should have a major impact in morbidity and mortality of this disease. The nuclear matrix is the structural scaffolding of the nucleus and specific nuclear matrix proteins (NMPs) have been identified as an "fingerprint" for various cancer types. Previous studies from our laboratory have identified four colon cancer associated NMPs termed colon cancer-specific antigen (CCSA)-2 to (CCSA)-5. The objective of the present study was to analyze the expression of one of these proteins, CCSA-2 in serum from various patient populations and to determine whether CCSA-2 antibodies could be used in a clinically applicable serum-based immunoassay specifically to detect colon cancer. Using an indirect ELISA, which detects CCSA-2, the protein was measured in the serum from 174 individuals, including healthy individuals, patients with colon cancer, patients with diverticulosis, colon polyps, inflammatory bowel disease (IBD) as well as other cancer types. With a predetermined cutoff absorbance of 0.6 OD we have successfully utilized this approach to develop an immunoassay that detected colon cancer. The immunoassay showed a sensitivity of 88.8% (24/27) and an overall specificity of 84.2% (106/127). This initial study showed the potential of CCSA-2 to serve as a highly specific blood based marker for colon cancer. Although potentially promising, the results of this study must be confirmed in larger independent validation studies.  相似文献   

18.
Wang Y  Han R  Zhang W  Yuan Y  Zhang X  Long Y  Mi H 《FEBS letters》2008,582(5):835-839
Human nuclear cyclophilin 33 (hCyP33) was the first protein which was found to contain an RNA-binding motif and a PPIase domain. It was not known what cellular and physiological roles are played by the RNA-binding activity as well as the PPIase activity of hCyP33. In this paper, we investigated the binding specificity of hCyP33 to different cellular RNA using ion-exchange chromatography and affinity adsorption. Furthermore, the influence of different cellular RNAs to the PPIase activity of hCyP33 was investigated using a protease-coupled method. The results show that hCyP33 binds specifically to mRNA, namely poly(A)(+)RNA, and that binding stimulates the PPIase activity of hCyP33.  相似文献   

19.
S Kosugi  Y Ohashi 《The Plant cell》1997,9(9):1607-1619
We have previously defined the promoter elements, sites IIa and IIb, in the rice proliferating cell nuclear antigen (PCNA) gene that are essential for meristematic tissue-specific expression. In this study, we isolated and characterized cDNAs encoding proteins that specifically bind to sites IIa and IIb. The two DNA binding proteins, designated PCF1 and PCF2, share > 70% homology in common conserved sequences at the N-terminal regions. The conserved regions are responsible for DNA binding and homodimer and heterodimer formation, and they contain a putative basic helix-loop-helix (bHLH) motif. The structure and DNA binding specificity of the bHLH motif are distinguishable from those of other known bHLH proteins that bind to the E-box. The motif is > 70% homologous to several expressed sequence tags from Arabidopsis and rice, suggesting that PCF1 and PCF2 are members of a novel family of proteins that are conserved in monocotyledons and dicotyledons. A supershift assay using an anti-PCF2 antibody showed the involvement of PCF2 in site IIa (site IIb) binding activities in rice nuclear extracts, particularly in meristematic tissues. PCF1 and PCF2 were also more likely to form heterodimers than homodimers. Our results suggest that PCF1 and PCF2 are involved in meristematic tissue-specific expression of the rice PCNA gene through binding to sites IIa and IIb and formation of homodimers or heterodimers.  相似文献   

20.
Specific binding of plant nuclear proteins to GGTAAA-like motifs in the terminal regions of the transposable elements Ac and Mu1 has been detected in several laboratories. However, the role of these proteins in transposition remains unknown. To test the hypothesis that this binding activity is necessary for transposition, we identified and mutagenized all the binding motifs within the Ds1 element. This analysis enabled us to define more precisely the requirements for binding of the host protein. We then tested the ability of the mutated elements to excise from the maize streak virus (MSV) genome. We found that mutated Ds1 elements that do not bind the host proteins, as determined by gel-shift competition assay, are still capable of undergoing excision in maize, although for one of the maize lines the rate of excision was reduced. Excision of mutated Ds1 elements generated typical excision footprints. These data indicate that binding of host protein(s) to the GGTAAA-like motifs is not essential for Ds1 excision; however, it may contribute to the efficiency of the process. Received: 30 September 1999 / Accepted: 17 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号