首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The CRES (cystatin-related epididymal spermatogenic) protein is a member of the cystatin superfamily of cysteine protease inhibitors and exhibits highly restricted expression in the reproductive tract. We have previously shown that CRES protein is present in elongating spermatids in the testis and is synthesized and secreted by the proximal caput epididymal epithelium. The presence of CRES protein in developing germ cells and in the luminal fluid surrounding maturing spermatozoa prompted us to examine whether CRES protein is associated with spermatozoa. In the studies presented, indirect immunofluorescence, immunogold electron microscopy, and Western blot analysis demonstrated that CRES protein is localized in sperm acrosomes and is released during the acrosome reaction. Interestingly, while the 19- and 14-kDa CRES proteins were present in testicular and proximal caput epididymal spermatozoa, the 14-kDa CRES protein was the predominant form present in mid-caput to cauda epididymal spermatozoa. Furthermore, following the ionophore-induced acrosome reaction, CRES protein localization was similar to that of proacrosin/acrosin in that it was detected in the soluble fraction as well as associated with the acrosome-reacted spermatozoa. The presence of CRES protein in the sperm acrosome, a site of high hydrolytic and proteolytic activity, suggests that CRES may play a role in the regulation of intraacrosomal protein processing or may be involved in fertilization.  相似文献   

2.
3.
4.
为探讨血管内皮生长因子(VEGF)在雄性生殖系精子发生发育和成熟过程中的调控作用,应用免疫组化、Periodic acid-Schiff(PAS)染色及蛋白质免疫印迹技术,检测VEGF蛋白在成年大鼠睾丸和附睾的表达和定位情况。Western-blots显示,在大鼠睾丸和附睾内均有VEGF蛋白(约45kD)的表达;免疫组化显示,睾丸内VEGF见于圆形和长形精子细胞、Sertoli细胞和Leydig细胞,免疫阳性产物位于细胞质内。精子细胞的VEGF表达伴随精子细胞顶体发育的全过程,精子残余体呈强阳性。附睾内VEGF表达于附睾管上皮,且有区域和细胞特异性。附睾起始段的所有上皮主细胞内都有VEGF阳性颗粒;头、体、尾各段的VEGF阳性细胞多数与含PAS阳性颗粒的细胞重合,证明为亮细胞;近端附睾的管腔内可见精子头部呈VEGF阳性染色。睾丸、附睾间质血管内皮为VEGF阴性。上述结果表明,VEGF蛋白可由生殖细胞和附睾管上皮细胞直接产生,它可能以自分泌和/或旁分泌的形式共同作用于睾丸和附睾的生殖细胞和血管内皮,直接或间接影响精子的发生、发育和成熟过程,特别是精子顶体的形成过程,并可能与精子在附睾内的成熟有关。  相似文献   

5.
为探讨血管内皮生长因子(VEGF)在雄性生殖系精子发生发育和成熟过程中的调控作用,应用免疫组化、Periodic acid-Schiff(PAS)染色及蛋白质免疫印迹技术,检测VEGF蛋白在成年大鼠睾丸和附睾的表达和定位情况。Western-blots显示,在大鼠睾丸和附睾内均有VEGF蛋白(约45kD)的表达;免疫组化显示,睾丸内VEGF见于圆形和长形精子细胞、Sertoli细胞和Leydig细胞,免疫阳性产物位于细胞质内。精子细胞的VEGF表达伴随精子细胞项体发育的全过程,精子残余体呈强阳性。附睾内VEGF表达于附睾管上皮,且有区域和细胞特异性。附睾起始段的所有上皮主细胞内都有VEGF阳性颗粒;头、体、尾各段的VEGF阳性细胞多数与含PAS阳性颗粒的细胞重合,证明为亮细胞;近端附睾的管腔内可见精子头部呈VEGF阳性染色。睾丸、附睾间质血管内皮为VEGF阴性。上述结果表明,VEGF蛋白可由生殖细胞和附睾管上皮细胞直接产生,它可能以自分泌和/或旁分泌的形式共同作用于睾丸和附睾的生殖细胞和血管内皮,直接或间接影响精子的发生、发育和成熟过程,特别是精子顶体的形成过程,并可能与精子在附睾内的成熟有关。  相似文献   

6.
7.
8.
Phosphatidylethanolamine-binding protein (PBP) has been described previously in the male reproductive tract, where it has been implicated in the biogenesis and maintenance of antigen segregation of membranes. In the present study we have used a specific antiserum to PBP to determine its expression and localisation in the adult and prepubertal rat testis and epididymis by Western blotting and immunohistochemistry. In the adult rat testis, PBP was localised to step 17–19 elongating spermatids, residual bodies, and interstitial Leydig cells. In the adult epididymis, PBP was localised to epithelial cells of the caput, corpus, and cauda regions and to the cytoplasmic droplets of spermatozoa in the lumen of the initial segment, caput, and corpus epididymidis. In prepubertal animals, PBP was expressed in both testes and epididymides from day 1 and day 3 postpartum, respectively (day 3 being the earliest epididymal tissue taken). In prepubertal testes, PBP was localised to Leydig cells from day 1 postpartum and was not detected in any other cell type until the differentiation of elongate spermatids, when it was detected in step 17–19 elongating spermatids. These data suggest that PBP may be involved in the organisation of sperm membranes during spermiogenesis. The presence of PBP in Leydig cells, however, suggests diverse roles for this protein as a lipid carrier or binding protein. Mol. Reprod. Dev. 49:454–460, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
In this study, we purified the first member of a new ribonuclease (RNase) A family from fluid of the proximal caput of the boar epididymis. This protein, named "Train A," is the most abundant compound secreted in the anterior part of the boar epididymis. After 2D electrophoresis, it is characterized by more than 10 isoforms ranging in size from 26 to 33 kDa and pI from 5 to 8.5. Several tryptic peptides were N-terminal sequenced, and an antiserum against one of these peptides was obtained. The protein was immunolocalized in the epididymal epithelium of the proximal caput, especially in the Golgi zone and the apical cytoplasm of the principal cells. In the lumen, spermatozoa were negative but droplets of reaction product were observed within the lumen. Full lengths of Train A cDNA were obtained from a lambdagt11 boar caput epididymis library and sequenced. The deduced protein is composed of 213 amino acids, including a 23-amino acid peptide signal and a potential N-glycosylation site. The mRNA of this protein has been retrieved and partially sequenced in the bull, horse, and ram, and homologous cDNA is found in databanks for the rat, mouse, and human. All the sequences are highly conserved between species. This protein and its mRNA are male-specific and exclusively expressed in the proximal caput of the epididymis, the only site where they have been found. Train A presents an RNase A family motif in its sequence. The RNase A family is a group of several short proteins (20-14 kDa) with greater and lesser degrees of ribonucleolytic activity and with supposed different roles in vivo. However, the presence of a long-conserved N-terminal specific sequence and the absence of RNase catalytic site for Train A indicate that Train A protein is a member of a new family of RNase A.  相似文献   

10.
11.
Previously, we identified a 26-kDa fertility-associated protein in bull seminal plasma as lipocalin-type prostaglandin D synthase. The objective of the present study was to immunohistochemically localize this enzyme to the various cell types within the bull testis and seven subsegments of the epididymis, and on ejaculated sperm in order to gain further insight into its potential function in male reproduction. In the testis, immunoperoxidase staining was localized within the elongating spermatids and Sertoli cells of the seminiferous tubules, varying with the stage of the spermatogenic cycle. The highest level of staining occurred during stages III-VII. The cuboidal epithelial cells of the rete testis and efferent ducts were also immunoreactive. Expression of lipocalin-type prostaglandin D synthase was not uniform in the seven epididymal subsegments, suggesting a possible role in sperm maturation. In all epididymal regions, expression was limited to the epithelial principal cells; no immunoreactivity was apparent in other cell types. Lipocalin-type prostaglandin D synthase was strikingly localized in the caput epididymidis, while moderate to weak staining was observed in the remainder of the epididymis. Droplets of reaction product observed within the lumen increased progressively from the caput to cauda. Using fluorescence microscopy, we also localized lipocalin-type prostaglandin D synthase to the apical ridge of the acrosome on ejaculated sperm.  相似文献   

12.
The number of proteins secreted by the boar epididymis increased progressively from 1 mo of age to the adult period. The first specific secretory activity was revealed at 2 mo in the distal caput (hexosaminidase, clusterin, and lactoferrin) and in the corpus (train O/HE1). Train A and glutathione peroxidase specific to the proximal caput, and trains E and M specific to the corpus, appeared at 4 mo. At 5 mo, secretion of procathepsin L occurred in the middle caput and that of mannosidase and E-RABP in the distal caput. Approximately 48% of all the proteins secreted in the adult boar epididymis were dependent on the presence of androgens, either stimulated (33.6%) or repressed (14.4%); 47% were modulated by other factors, and 5% were unregulated. In the proximal caput, 50% of the specific secreted proteins were controlled essentially by factors emanating from the testis. In more distal regions, two proteins secreted in the corpus were regulated by factors from the anterior regions. The regionalization of the secretory activity of the epididymal epithelium resulted in a specific regulation for each protein, which was modulated according to the region of expression and influenced by either testicular or epididymal factors that remain to be identified.  相似文献   

13.
It has recently been shown in mice that the plasma membrane Ca2+-ATPase isoform 4 (PMCA4) is essential for sperm fertilization capacity. We analyzed whether sperm PMCA4 is formed in the rat during spermatogenesis or is synthesized in the epididymis and transferred onto sperm during sperm maturation. We could show that PMCA4 is conserved in sperm from testis to epididymis. In testis, PMCA4 mRNA was restricted to spermatogonia and early spermatocytes, while the PMCA4 protein was detected in spermatogonia, late spermatocytes, spermatids and in epididymal sperm. In epididymis PMCA4 mRNA was localized in basolateral plasma membranes of epithelial cells of the caput, corpus and cauda epididymidis. In contrast, the protein was only detectable in the epithelial cells of the caput, indicating that PMCA4 mRNA is only translated into protein in caput epithelium. In the epididymal corpus and cauda, PMCA4 mRNA and protein, respectively, was localized and in peritubular cells. Furthermore, we detected an identical distribution of PMCA4a and b splice variants in rat testis, epididymal corpus and cauda. In the caput epididymidis, where PMCA4 is located in the epithelium splice variant 4b was more prominent. Further experiments have to clarify the functional importance of the differences in the PMCA4 distribution.  相似文献   

14.
15.
Transgenic male mice bearing inactive mutations of the receptor tyrosine kinase c-ros lack the initial segment of the epididymis and are infertile. Several techniques were applied to determine differences in gene expression in the epididymal caput of heterozygous fertile (HET) and infertile homozygous knockout (KO) males that may explain the infertility. Complementary DNA arrays, gene chips, Northern and Western blots, and immunohistochemistry indicated that some proteins were downregulated, including the initial segment/proximal caput-specific genes c-ros, cystatin-related epididymal-spermatogenic (CRES), and lipocalin mouse epididymal protein 17 (MEP17), whereas other caput-enriched genes (glutathione peroxidase 5, a disintegrin and metalloproteinase [ADAM7], bone morphogenetic proteins 7 and 8a, A-raf, CCAAT/enhancer binding protein beta, PEA3) were unchanged. Genes normally absent from the initial segment (gamma-glutamyltranspeptidase, prostaglandin D2 synthetase, alkaline phosphatase) were expressed in the undifferentiated proximal caput of the KO. More distally, lipocalin 2 (24p3), CRISP1 (formerly MEP7), PEBP (MEP9), and mE-RABP (MEP10) were unchanged in expression. Immunohistochemistry and Western blots confirmed the absence of CRES in epididymal tissue and fluid and the continued presence of CRES in spermatozoa of the KO mouse. The glutamate transporters EAAC1 (EAAT3) and EAAT5 were downregulated and upregulated, respectively. The genes of over 70 transporters, channels, and pores were detected in the caput epididymidis, but in the KO, only three were downregulated and six upregulated. The changes in these genes could affect sperm function by modifying the composition of epididymal fluid and explain the infertility of the KO males. These genes may be targets for a posttesticular contraceptive.  相似文献   

16.
The cDNA sequence for 24p3 protein in ICR mouse epididymal tissue was determined by PCR using primers designed according to the cDNA sequence derived from 24p3 protein in mouse uterine tissue. In the present study, 24p3 protein was immunolocalized in the epithelial cells and lumen of mouse epididymis. Both immunoblot analysis for protein and northern blot analysis for mRNA level showed a declining gradient of 24p3 expression from the caput to caudal region of the epididymis. The 24p3 protein was undetectable in the testis. These findings suggest that the 24p3 protein is a caput-initiated secretory protein in the mouse epididymis. A postnatal study revealed that 24p3 gene expression occurred in mice at the age of 14 days, before the completion of epididymal differentiation. This expression remained at a constant level until epididymal differentiation was completed. We also found that the secreted 24p3 protein interacted predominantly with the acrosome of caudal spermatozoa. Our findings suggest that the epididymal 24p3 protein is a caput-initiated and sperm-associated gene product and may be important in the reproductive system.  相似文献   

17.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
We have recently observed that a polyclonal antibody raised against a mouse epididymal luminal fluid protein (MEP 9) recognizes a 25-kDa antigen in mouse testis and epididymis [Rankin et al., Biol Reprod 1992; 46:747-766]. This antigen was localized by light and electron microscopic immunohistochemistry. The immunoreactivity in the testis was found in the residual cytoplasm of the elongated spermatids, in the residual bodies, and in the cytoplasmic droplets of spermatozoa. In the epididymis, the epithelial principal cells were stained from the distal caput to the distal cauda. Immunogold labeling in the principal cells showed diffuse distribution without preferential accumulation in either the endocytic or the secretory apparatus of the cells. In the epididymal lumen, the immunoreactivity was restricted to the sperm cytoplasmic droplets. No membrane-specific labeling was observed in luminal spermatozoa, cytoplasmic droplets, or isolated sperm plasma membranes. Three weeks after hemicastration or severance of the efferent ducts, a normal distribution of the immunoreactive sites was found in the epididymis. Immunoreactivity, was also detected in the epididymal epithelium of immature mice as well as in that of XXSxr male mice having no spermatozoa in the epididymis. These results suggest that the immunoreactivity seen in the principal cells originates from synthesis rather than endocytosis of the testicular protein from disrupted cytoplasmic droplets. Furthermore, these results suggest that the 25-kDa protein is synthesized independently by both testis and epididymis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号