首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
To determine if newly synthesized protein is imperative for the resumption of meiosis in bovine follicular oocytes collected from small antral follicles, cumulus-enclosed and denuded oocytes were cultured in TCM-199 both with and without various concentrations of the protein synthesis inhibitor, cycloheximide. After 11 h of culture in inhibitor-free medium, all oocytes had undergone germinal vesicle breakdown (GVBD). However, when concentrations of more than 1.0 mug/ml cycloheximide were added to the medium, the meiotic resumption of bovine oocytes was completely blocked. This inhibitory effect of cycloheximide was fully reversible after removal of the inhibitor from maturation media. Germinal vesicle breakdown following removal of cycloheximide occurred twice as fast as in the control medium. Nevertheless, when oocytes were arrested at the germinal vesicle (GV) stage by cycloheximide, a significantly higher proportion of chromatin condensation (40 to 57%) was observed in denuded oocytes than in cumulus-enclosed oocytes (11 to 22%). Thus the cycloheximide treatment could not prevent the chromatin condensation in only denuded oocytes. We conclude that protein synthesis is a prerequisite for GVBD in bovine follicular oocytes and that cumulus cells are responsible for the complementary regulation of the chromatin condensation at the GV stage, regardless of protein synthesis in the oocytes.  相似文献   

2.
All porcine oocytes cultured 20 hr in medium with 10 μg/ml cycloheximide rested in the germinal vesicle (GV) stage but with the highly condensed bivalents in nucleoplasm. When these oocytes were washed and cultured in the control medium for 2, 4, and 6 hr, germinal vesicle breakdown (GVBD) was completed in 0, 86, and 100% of them, respectively. When similarly inhibited oocytes cultured successively only 2.5 hr in the control medium were given again in cycloheximide enriched medium (3.5 hr), nearly all of them reached late diakinesis stage again. It means that oocytes cultured for 20 hr and washed free of this inhibitor of protein synthesis completed GVBD rapidly (4 hr) and protein synthesis crucial for nuclear membrane disintegration occurred already during the first 2 hr after washing of inhibitor. All oocytes cultured for 20 hr in medium with 1 mM p-aminobenzamidine rested in GV with chromatin around the compact nucleolus. The successive culture in cycloheximide (20 hr) and p-aminobenzamidine (10 hr) prevented GVBD in all oocytes, too. In contrast, when the oocytes washed after cycloheximide block (20 hr) were cultured in p-aminobenzamidine enriched medium 2 and 3 hr and again for 6 hr in cycloheximide medium, the nuclear membrane dissolved in 62 and 68% of oocytes, respectively. These data suggest that inhibition of protein synthesis in pig oocytes does not prevent the high condensation of bivalents in GV. However, nuclear membrane breakdown requires the successive protein synthesis and proteolysis.  相似文献   

3.
Germinal vesicle breakdown (GVBD) of bovine oocytes was completely blocked by cycloheximide added to culture medium at concentrations of 1-20 micrograms/ml. Nevertheless, under such conditions a certain degree of chromatin condensation inside the germinal vesicle was observed. The inhibitory effect was not influenced by the presence or absence of cumulus cells and was fully reversible; but the process of GVBD was then significantly accelerated. The critical period in which the proteins necessary for GVBD are synthesized lasts approximately the first 5 h of culture. When germinal vesicle-arrested oocytes are fused to maturing bovine oocytes containing condensed chromosomes, GVBD of immature oocytes occurs within 3 h, even in the presence of cycloheximide. In the mouse, GVBD cannot be inhibited by protein synthesis inhibitors. When immature mouse oocytes are fused with immature bovine oocytes and the giant cells are then cultured in cycloheximide-supplemented medium, both GVs are observed, or only mouse GVBD occurs in common cytoplasm after 8 h of culture. We conclude that protein synthesis is necessary for GVBD of bovine oocytes. Our results also suggest that maturation-promoting factor (MPF) is not autocatalytically amplified in mammalian oocytes.  相似文献   

4.
Tatemoto H  Terada T 《Theriogenology》1998,49(5):1007-1020
The effects of FSH-stimulated cumulus cells on the regulatory mechanisms of chromatin condensation and maturation-promoting factor (MPF) activation around the time of germinal vesicle breakdown (GVBD) in bovine oocytes were examined. Chromatin condensation occurred in oocytes arrested at the germinal vesicle (GV) stage by protein synthesis inhibitor, cycloheximide, but this condensation was blocked by FSH-stimulated cumulus cells. However, treatment with cyclic AMP (cAMP)-dependent protein kinase inhibitor, H-8, dramatically increased the proportion of oocytes possessing GVs with condensed bivalents. Under the condition of inhibited protein synthesis, the phosphorylation form of p34cdc2 kinase was not changed due to chromatin condensation, although the activity of histone H1 kinase was significantly increased compared with that of oocytes possessing GVs with filamentous bivalents. The cycloheximide-dependent GVBD block was overcome by okadaic acid (OA) in 48 and 13% of the oocytes in the absence and presence of FSH, respectively. An initial 6-h culture period critical for protein synthesis was necessary for OA to counteract the inhibitory effect exerted by cycloheximide on the induction of GVBD and activation of histone H1 kinase in the absence of FSH, whereas this first culture period was prolonged for 2 h in the presence of FSH. Furthermore, even in FSH-stimulated oocytes, H-8 facilitated an OA-counteracted overcome of the cycloheximide-dependent GVBD block after 2 h of initial culture for protein synthesis. From these results, it is concluded that cAMP-dependent protein kinase activity regulated by cumulus cells following FSH-stimulation requests plays a role in the complex mechanism of chromatin condensation and MPF activation leading to meiotic resumption in bovine oocytes.  相似文献   

5.
Tatemoto H  Terada T 《Theriogenology》1995,43(6):1107-1113
To identify the stage during maturation at which new protein and RNA are synthesized for meiotic resumption, follicular oocytes were cultured in TCM-199 with the protein synthesis inhibitor cycloheximide or the hnRNA synthesis inhibitor alpha-amanitin. Although the meiotic resumption of cumulus-enclosed oocytes was completely blocked by the addition of 25 microg/ml cycloheximide at 4 h after the onset of culture, 23% of oocytes cultured from 5 h post cultivation in the medium with cycloheximide underwent germinal vesicle breakdown (GVBD). By further delaying the addition of cycloheximide, the proportion of oocytes which underwent GVBD increased. Addition of the inhibitor at 8 h or more post cultivation resulted in GVBD occurring in more than 87% of oocytes, though none of them were able to proceed beyond the metaphase I stage. In contrast, the addition of 50 microg/ml alpha-amanitin from the onset of culture significantly reduced the proportion of GVBD to 75% in cumulus-enclosed oocytes, while no significant reduction in the proportions of GVBD was noted in the case of its addition from 1 h of culture onward. However, denuded oocytes were almost insensitive to any treatments with alpha-amanitin. These results indicate that protein synthesis in the oocytes and RNA synthesis in the cumulus cells soon after the onset of culture are necessary for GVBD and that continuous protein synthesis following GVBD is indispensable for progression of the meiotic division in bovine oocytes.  相似文献   

6.
Studies on Ca2+-channel distribution in maturation arrested mouse oocyte   总被引:1,自引:0,他引:1  
The present study was carried out to identify the existence of voltage-dependent Ca2+-channels (P/Q-, N-, and L-type) and their distributional differences in germinal vesicle (GV) and GV breakdown (GVBD)-arrested mouse oocytes which includes GVBD to telophase I of meiosis I and matured oocytes (MII, metaphase of meiosis II) by using the immunocytochemical method and a confocal laser scanning microscope. (1) Comparison between follicular oocytes (GV) and GV-arrested oocytes after 17 hr of in vitro culture. In follicular oocytes, P/Q-, N-, L (anti-alpha1C anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, GV-arrested oocytes, after in vitro culture for 17 hr, showed no presence of Ca2+-channels in most oocytes. (2) Comparison between GVBD oocytes after culture in vitro for 3 hr and GVBD-arrested oocytes after culture in vitro for 17 hr. In GVBD oocytes, P/Q-, N-, L (anti-1C, anti-alpha1D)-type Ca2+-channels showed both localized and uniform staining. In contrast, in GVBD-arrested oocytes, none of the three types of Ca2+-channels were identified in 72-86% of oocytes. The present study demonstrates that in most GVBD-arrested oocytes that do not mature to MII, there is no Ca2+-channel identified. Therefore, most of the GVBD-arrested oocytes seem to have defects in Ca2+-channel expression/translation. Also, distributional changes of Ca2+-channels take place depending on the maturation progress in GV oocytes and MII stage oocytes (ovulated and 17 hr cultured MII stage oocytes). In addition, we found evidence that a functional voltage-dependent Ca2+-channel (L-type) exists in mouse oocytes (ovulated and cultured MII staged oocytes by a confocal laser scanning microscope).  相似文献   

7.
The activity of maturation promoting factor (MPF) which causes chromosome condensation and subsequent oocyte maturation was investigated in mouse oocytes using polyethylene-glycol-mediated cell fusion technique. Fully grown oocytes were bisected at germinal vesicle (GV) stage or shortly after germinal vesicle breakdown (GVBD) into anucleate and nucleate fragments. After 2-3 or 15-17 hr of culture these fragments were fused with interphase blastomeres from two-cell embryos. It was found that almost all the anucleate oocyte fragments cultured for a short term (2-3 hr), regardless of whether they were produced at GV stage or after GVBD, induced premature chromosome condensation in the blastomere nuclei, whereas only about 20% of those cultured for a long term (15-17 hr) could do so. On the other hand, the nucleate fragments always retain the cytoplasmic activity to induce chromosome condensation. Thus we suggested that the MPF initially could appear in mouse oocytes independently of the GV, that the mixing of GV material with the oocyte cytoplasm following GVBD had no effect on the activity of MPF in anucleate fragments, and that oocyte chromosomes or some components associated with them could play a significant role in maintaining the MPF activity.  相似文献   

8.
Summary In the absence of a suitable energy source, mouse oocytes cultured in vitro resume, but fail to complete, meiotic maturation. However, little is known about the underlying mechanisms leading to this meiotic failure. We utilized pyruvate-deficient medium to test for the role of pyruvate throughout the meiotic maturation process. Germinal vesicle-stage (GV) oocytes underwent germinal vesicle breakdown (GVBD), but failed to form a polar body when cultured continuously in pyruvate-free medium. However, when GV oocytes were preincubated for 4 h in pyruvate-free medium containing dibutyryl cyclic adenosine monophosphate (dbcAMP) and then cultured in pyruvate-free medium, GVBD was markedly inhibited. Preincubation of GV oocytes in dbcAMP and cycloheximide, followed by culture in cycloheximide only, also inhibited GVBD. A longer preincubation period was required in the cycloheximide-dbcAMP case (12 h) than in pyruvate-free-dbcAMP medium situation (4 h). Strikingly, reassembly of the nuclear membrane without polar body formation was observed following GVBD in oocytes continuously cultured in pyruvate-free medium. The reassembled nuclear membrane increased in size with continued culture, and it surrounded partially-decondensed chromatin. Nuclear membrane reassembly also occurred in oocytes which had undergone GVBD during continuous culture in medium containing only cycloheximide. Reformation of nuclear membranes after GVBD was confirmed by electron-microscopic analyses of oocytes cultured in pyruvate-free medium or in the presence of cycloheximide. We conclude that both pyruvate and protein synthesis are required for nuclear membrane disassembly, whereas lack of pyruvate or protein synthesis is associated with interruption of the metaphase state and reassembly of the nuclear membrane. The evidence suggests that assembly and maintenance of an intact nucleus and its disintegration are all amenable to regulation by pyruvate, possibly via mechanism(s) involving protein synthesis.  相似文献   

9.
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.  相似文献   

10.
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases (cdk), is shown to inhibit germinal vesicle breakdown (GVBD) in pig oocytes. Oocytes treated with 100 microM BL I were arrested in the germinal vesicle (GV)-stage and displayed low activity of cdc2 kinase and MAP kinase. Nevertheless, chromosome condensation occurred and highly condensed bivalents were seen within an intact GV after a 24-hr culture in the presence of BL I. The inhibitory effect of BL I on MAP kinase activation during culture was likely mediated through a cdk-dependent pathway, since MAP kinase activity present in extracts derived from metaphase II eggs was not inhibited by BL I. The block of GVBD could be released by treating oocytes with okadaic acid (OA), an inhibitor of type 1 and 2A phosphatases; 82% of the oocytes treated with the combination of OA/BL I underwent GVBD, and MAP kinase became activated, while cdc2 kinase remained inhibited. These results suggest that both chromosome condensation and GVBD could occur without activation of cdc2 kinase, whereas an increase in MAP kinase activity may be a requisite for GVBD in pig oocytes in conditions when cdc2 kinase activation is blocked by BL I.  相似文献   

11.
The effect of 6-dimethylaminopurine (6-DMAP) on germinal vesicle breakdown (GVBD) and maturation in bovine oocytes was investigated in this study. This puromycin analog has been shown to be an inhibitor of phosphorylation. Whereas GVBD occurred in nearly all oocytes (96.8%, 120/124) in control medium, presence of 6-DMAP (2 mM) blocked this process almost completely, irrespective of the presence (98.3% GV, 349/355) or absence (97.1% GV, 165/170) of cumulus cells. When lower concentrations of 6-DMAP were used (100-500 microM), GVBD was observed in 87.9% of oocytes, but their maturation was arrested at late diakinesis-metaphase I stage. The inhibition of GVBD was fully reversible, but most of the metaphase II plates were abnormal (80%). To assess whether the action of 6-DMAP is different from the inhibitors of protein synthesis, metaphase II oocytes were exposed to either cycloheximide or 6-DMAP, respectively. Whereas in cycloheximide-supplemented medium approximately 80% of the oocytes were activated, parthenogenetic activation was much less frequent after incubation in 6-DMAP (14.5%). Fusion studies showed that, even if GVBD occurs in 6-DMAP supplemented medium, the level of the maturation-promoting factor (MPF) is decreased. These experiments may indicate the importance of phosphorylation for GVBD in cattle oocytes.  相似文献   

12.
13.
Germinal vesicle breakdown (GVBD) in cumulus-enclosed and denuded cattle oocytes was sensitive to puromycin at concentrations at or above 50 micrograms/ml. Media supplemented with 5-25 micrograms/ml of puromycin did not significantly reduce either rate or sequence of GVBD after 8 h of culture (82-96% GVBD). In concentrations of 50, 75, and 100 micrograms/ml, GVBD occurred in 15, 4, and 2% of oocytes, respectively. However, 50 micrograms puromycin/ml did postpone the time sequence of GVBD, since all treated oocytes underwent GVBD after 20 h of culture. Oocytes arrested in the germinal vesicle (GV) stage possessed GV filled with highly condensed bivalents. The puromycin block (100 micrograms/ml) was fully reversible, and the time sequence of GVBD was two times faster than in control medium. Proteins important for GVBD were synthesized during the first 4 h of culture, and 81% of oocytes underwent GVBD when puromycin (100 micrograms/ml) was added after 4 h of preincubation in control medium. The first polar body (I PB) expulsion was more sensitive to inhibition of protein synthesis, as shown by the observation that 2.5 and 5 micrograms puromycin/ml significantly (69 and 61%) reduced the incidence of Metaphase II, and 10 micrograms/ml highly significantly (31%) reduced it. The I PB expulsion in concentrations of 25 and 37 micrograms puromycin/ml was less than 5%. The subsequent culture in puromycin (8 h) and 6-dimethylaminopurine (8 h) proved that nuclear membrane breakdown is less sensitive to inhibition of protein phosphorylation than the process of chromatin condensation.  相似文献   

14.
The rate of spontaneous meiotic maturation and the period of commitment to this process were determined in bovine oocytes devoid of surrounding cumulus cells, cultured in chemically defined medium with bovine serum albumin in the absence of serum. The effects of compounds that are known to elevate levels of intracellular cyclic adenosine monophosphate (cAMP) on the resumption and progression of meiosis were investigated. Bovine oocytes were mass-harvested, denuded of cumulus cells, and cultured in 2A-BMOC medium supplemented with 0.5% bovine serum albumin. Intracellular cAMP levels were indirectly modified using 8-bromo-cAMP, dibutyryl cAMP (dbcAMP), forskolin, or 3-isobutyl-1-methyl xanthine (IBMX). Meiotic maturation was scored cytogenetically. Ninety percent of denuded bovine oocytes mature after 24 h, with 65% progressing beyond anaphase I. These oocytes remain at the germinal vesicle (GV) stage for up to 8 h in culture. GV breakdown (GVBD) occurs in 40.5% of oocytes at 9 h. The peak times for the different meiotic stages were 12 h for diakinesis, 15 h for late diakinesis to metaphase I, 20 h for metaphase I, and 24 h for telophase I. By 48 h, most had reached metaphase II. There is a 2-h lag period between the time at which they become irreversibly committed to mature (at 7 h) and when they demonstrate GVBD (at 9 h). Incubation for 12 h with high concentrations of 8-bromo-cAMP and forskolin significantly inhibited GVBD, while the effect of dbcAMP was similar but less pronounced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Temporal progression of nuclear events of goat oocytes matured in vitro was studied by adding a specific inhibitor to the culture medium at different time points, to investigate protein synthesis requirements and its pattern during in vitro maturation. Goat cumulus-oocyte complexes (COCs) were matured in vitro in TCM 199, fixed at different time intervals and stained with orcein to assess nuclear changes. The germinal vesicle (GV) stage was found to be present at 0 h, chromosomal condensation stage was observed at 8 h, metaphase I at 12 to 14 h, and metaphase II was begun after 16 h of maturation and was nearly completed at 24 h. Protein synthesis inhibitor, cycloheximide, blocked oocyte maturation at germinal vesicle breakdown(GVBD), if added to the maturation medium between 0 to 4 h, suggesting that protein synthesis is required for GVBD. The transition from metaphase I to metaphase II was also protein synthesis-dependent, as observed when cycloheximide was used between 8 to 10 h of culture. When cycloheximide was added from 12 h of culture onwards, nuclear progression to metaphase II was progressively restored, but many chromosomal abnormalities were noted. Changes in the protein synthesis pattern were studied by radiolabeling of oocytes with [(35)S]-methionine at 0, 7, 12 and 24 h of culture, corresponding with GV, GVBD, metaphase I and metaphase II stages. A polypeptide of 28.1 KDa appeared as a major band at the GV stage, and its size decreased greatly and disappeared after the GVBD stage. Three new polypeptides (35, 36.5 and 39 KDa) appeared at GVBD and were detectable at metaphase II. In conclusion, the synthesis of proteins is required for the maintenance and transition of goat oocytes from GV to metaphase II during in vitro maturation.  相似文献   

16.
Han D  Liu XY  Jiao GZ  Liang B  He N  Gao WQ  Tan JH 《Theriogenology》2012,77(9):1900-1910
Cyclin B1 turnover and the insensitivity of fully-grown mouse oocytes to cycloheximide (CHX) inhibition of germinal vesicle breakdown (GVBD) were examined by assaying GVBD and cyclin B1 levels after treatment of oocytes with various combinations of eCG and CHX. Whereas over 95% of oocytes underwent GVBD after culture for 24 h with CHX alone, only 10% did so after culture with CHX + eCG (P < 0.05). In addition, preculture with eCG alone had no effect, but preculture with eCG + CHX prevented GVBD during a second culture with CHX alone. Therefore, we inferred that eCG delayed GVBD long enough for CHX inhibition of protein synthesis to allow cyclin B1 to decrease below a threshold where GVBD became dependent upon its de novo synthesis. However, western blot revealed no cyclin B1 synthesis, but cyclin B1 degradation, as long as GVs were maintained intact with eCG. Regarding the function of CHX in preculture without protein synthesis to block subsequent GVBD, whereas eCG delayed GVBD for only 3 h, CHX had an ongoing effect that further postponed GVBD, thus allowing cyclin B1 to decrease below the threshold. When oocytes precultured with eCG + CHX were further cultured without eCG and CHX, cyclin B1 first decreased but then, because of the ongoing effects of CHX, increased to a level sufficient to induce GVBD. The content of P34Cdc2 was not altered under any of the culture conditions (P > 0.05). We concluded that insensitivity of mouse germinal vesicle (GV) oocytes to CHX was due to the presence of sufficient cyclin B1, and that cyclin B1 level in such oocytes was maintained by an equilibrium between synthesis and degradation.  相似文献   

17.
18.
Phosphorylation is considered as a common post-translational modification implicated in the control of various key enzymes. In somatic and germinal cells, important regulators of the cell cycle are controlled by their phosphorylation status, and some act as kinases or phosphatases themselves. Bovine oocytes are blocked in the germinal vesicle (GV) stage until either an LH surge occurs or until oocytes are released from the inhibitory influence of the follicle. Meiotic resumption in vitro is therefore an excellent model for the study of phosphorylation events that occur in the G2/M transition, a control point of the cellular cycle. To better understand this transition, we have modulated, either directly or indirectly, kinases using known effectors (epidermal growth factor, EGF; isobutyl-methylxanthine-forskolin, Bx-Fk; 6-dimethylaminopurine, 6-DMAP) or phosphatases (okadaic acid, OA) or cycloheximide, which is known to inhibit maturation through protein synthesis suppression. With this procedure, influence on meiotic resumption and phosphoprotein patterns was verified. Both EGF and OA accelerated nuclear maturation after 9 hr of culture. Only 23% (n = 140) and 9% (n = 111) of oocytes were still at GV stage with EGF and OA, respectively, compared to 41% (n = 105) of control oocytes. The different treatments changed the protein patterns in oocytes. In cumulus cells, the patterns were especially modified by the OA treatment. Characteristic changes that occur in germ cells were also identified. Nuclear maturation was inhibited by modulators of kinase (6-DMAP, GV = 74%, n = 126; cAMP dependent protein kinase (PKA) stimulators, Bx-Fk, GV = 71%, n = 129) likewise, phosphoprotein patterns were affected, especially in oocytes. The cycloheximide treatment was able to maintain nearly all oocytes in GV after 9 hr of culture (GV = 92%, n = 131). This analysis allowed the identification of substrates for the different effectors used in this study and also helped in determining the levels of phosphorylation required for nuclear maturation. © 1995 wiley-Liss, Inc.  相似文献   

19.
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases, was shown to block germinal vesicle (GV) breakdown (GVBD) in bovine oocytes in a concentration-dependent manner; GVBD was almost totally inhibited over the course of 24-48 h of culture when 100 microM BL I was included in tissue culture medium 199 containing either polyvinyl alcohol or BSA. Correlated with this inhibition was the failure of either p34(cdc2) kinase or mitogen-activated protein (MAP) kinase to become activated, and it was unlikely that BL I directly inhibited MAP kinase, since 100 microM BL I did not inhibit MAP kinase activity present in extracts obtained from metaphase II-arrested bovine eggs that possess high levels of MAP kinase activity. Nevertheless, the formation of highly condensed bivalents was observed in 78% of the BL I-treated GV-intact oocytes. This result suggests that chromosome condensation during first meiosis in bovine oocytes does not require the activity of either p34(cdc2) kinase or MAP kinase. Treatment of BL I-arrested oocytes with okadaic acid (OA) did not result in either the activation of p34(cdc2) kinase or MAP kinase, or inducement of GVBD. The BL I-induced block of GVBD for 24 h was reversible, and a subsequent 24-h culture resulted in 90% of oocytes reaching metaphase II with emission of the first polar body. Correlated with the progression to and arrest at metaphase II was the full activation of both p34(cdc2) and MAP kinases. The reversibility after 48 h of culture in BL I was partially decreased when compared to that achieved after an initial 24-h culture. Fertilization in vitro of these eggs resulted in a high incidence of both sperm penetration and pronucleus formation (88% and 70%, respectively).  相似文献   

20.
Mouse and porcine fully grown oocytes at metaphase I(MI) were fused to one or more fully grown oocytes of the same species that contained an intact germinal vesicle (GV). In fused cells containing one GV, premature chromosome condensation (PCC) was observed. In fused cells containing more than one GV, germinal vesicle breakdown (GVBD) and PCC were delayed. Fusion of an MI fully grown oocyte with a growing oocyte resulted in rapid PCC, whereas, fusion of an MI fully grown oocyte with more than one growing oocyte resulted in neither PCC nor GVBD. Moreover, MI chromosomes formed a clump of chromatin. Results of these experiments suggest that the delay in GVBD in fusions of MI oocytes with multiple GV-intact oocytes was due to dilution of maturation promoting factor (MPF) by the cytoplasm of the GV-intact oocytes and that the cytoplasm of growing oocytes can inhibit MPF present in MI oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号