共查询到20条相似文献,搜索用时 0 毫秒
1.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明:在正常状态下,根毛区细胞质内Ca2+较少,主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜,有一定活性。在0.448%NaHCO3胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。以上结果表明,Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。 相似文献
2.
Barata Hosana Cardoso Cristiana M. Wolosker Herman de Meis Leopoldo 《Molecular and cellular biochemistry》1999,195(1-2):227-233
The antioxidant nordihydroguaiaretic acid (NDGA) inhibited the different sarco/endoplasmic reticulum Ca2+-ATPase isoforms found in skeletal muscle and blood platelets. For the sarcoplasmic reticulum, but not for the blood platelets Ca2+-ATPase, the concentration of NDGA needed for half-maximal inhibition was found to vary depending on the substrate used and its concentration in the assay medium. The phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase by ATP and by Pi were both inhibited by NDGA. In leaky vesicles, measurements of the ATP Pi exchange showed that NDGA increases the affinity for Ca2+ of the E2 conformation of the enzyme, which has low affinity for Ca2+. The effects of NDGA on the Ca2+-ATPase were not reverted by the reducing agent dithiothreitol nor by the lipid-soluble antioxidant butylated hydroxytoluene. 相似文献
3.
Lynn R. Fraser 《Molecular reproduction and development》1993,36(3):368-376
The sequence of ionic changes involved in initiation of acrosomal exocytosis in capacitated mouse spermatozoa was investigated. Earlier studies demonstrated that a large influx of Na+ is required for exocytosis, this Na+ apparently being associated with an increase in intracellular pH (pHi) via an Na+-H+ exchanger. This rise in pHi may in turn activate calcium channels and permit the influx of extracellular Ca2+ needed to trigger acrosomal exocytosis. In the present study, the dihydropyridine voltage-dependent calcium channel antagonist nifedipine was able to inhibit significantly exocytosis in sperm cells treated in various ways capable of stimulating acrosomal loss. The monovalent cation ionophore monensin can promote Na+ entry required for both capacitation and acrosomal exocytosis, as demonstrated by using chlortetracycline to monitor changes in sperm functional potential. In the presence of 10 nM nifedipine, monensin treatment accelerated capacitation but was unable to trigger exocytosis. The requirement for internalization of a high concentration of Na+ can be bypassed by the addition of 25 mM NH4CI to raise the pHi of cells capacitated in 25NH4CI to raise the pHi of cells capacitated in 25 mM Na+ (insufficient Na+ to support exocytosis under usual conditions). Again, introduction of nifedipine was able to inhibit exocytosis. In a third experimental approach, amiloridestimulated exocytosis in capacitated cells was significantly inhibited by nifedipine. In contrast to these treatments directed at specific mechanisms, the ability of the Ca2+ inophore A23187 to promote more general entry of Ca2+ and thereby to accelerate capacitation and exocytosis was not inhibited by nifedipine. Finally, monensin-treated cells exhibited a rise and then a fall in 45Ca2+ uptake, the time course of which paralleled stimulation of acrosomal exocytosis in similarly treated cells. Nifedipine significantly reduced this uptake. The fact that nifedipine can block exocytosis induced by a variety treatments strongly suggests that voltage-dependent calcium channels play a pivotal role in the response. These results are consistent with the following sequence of ionic changes in capacitated cells leading to acrosomal exocytosis: [Na+]i ↑ → [H]i↓ → pHi ↑ → activation of calcium channels → [Ca2+]i ↑ → exocytosis. Given that zona-induced exocytosis is reportedly an indirect response, mediated by voltage-dependent calcium channels, and that the Na+-H+ exchanger in somatic cells can be activated by receptor-mediated mechanisms, we suggest that sperm-zona inter action promotes an influx of Na+ by activating an Na+-H+ exchanger and thereby initiating the above sequence of changes. © 1993 Wiley-Liss, Inc. 相似文献
4.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger. 相似文献
5.
Abstract: Calmodulin was isolated as an electrophoretically homogeneous protein from bovine posterior pituitary glands. The yield indicated that this gland is a particularly rich source. Purified bovine posterior pituitary calmodulin and bovine brain calmodulin had identical electrophoretic mobilities on 10% and 12% polyacrylamide gels. The protein was further identified by molecular weight determination and by amino acid analysis which showed that it contained trimethyllysine, one residue per molecule. Bovine posterior pituitary calmodulin was found to activate a preparation of calmodulin-deficient phosphodiesterase from bovine heart. In addition, pituitary calmodulin stimulated Ca2+ + Mg2+ -ATPase activity associated with a purified nerve ending plasma membrane fraction. This dependence could only be demonstrated after successive washing of the membranes with EGTA buffers, a procedure designed to remove endogenous calmodulin. 相似文献
6.
Thermal analysis of the plasma membrane Ca2+-ATPase 总被引:2,自引:0,他引:2
The plasma membrane Ca2+-ATPase is a well known enzyme in eucaryotes able to extrude calcium to the extracellular space in order to restore intracellular calcium to very low levels. This ATPase needs plasma membrane lipids such as acidic phospholipids in order to maintain its activity. In this study, we investigated the role that calcium and cholesterol play on the thermal stability of the Ca2+-ATPase isolated from cardiac sarcolemma and erythrocyte membranes. Calcium showed a stabilizing and protective effect when the enzyme was exposed to high temperatures. This stabilizing effect showed by calcium was potentiated in the presence of cholesterol. These protection effects were reflected on several thermodynamic parameters such as T50, Hvh and apparent G, indicating that calcium might induce a conformational change stabilized in the presence of cholesterol that confers enzyme thermostability. The effect shown by cholesterol on Hvh and apparent H open the possibility that this lipid decreases cooperativity during the induced transition. Despite that a binding site for cholesterol has not been identified in the plasma membrane Ca2+-ATPase, our results supports the proposal that this lipid interacts with the enzyme in a direct fash 相似文献
7.
Sher AA Noble PJ Hinch R Gavaghan DJ Noble D 《Progress in biophysics and molecular biology》2008,96(1-3):377-398
The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions. 相似文献
8.
Ronghua Zhuge Siben Li Ter-Hsin Chen Walter H. Hsu 《Molecular reproduction and development》1995,41(1):20-28
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc. 相似文献
9.
New perspectives on S100 proteins: a multi-functional Ca 2+ -, Zn 2+ - and Cu 2+ -binding protein family 总被引:9,自引:0,他引:9
S100 proteins (16 members) show a very divergent pattern of cell- and tissue-specific expression, of subcel-lular localizations and relocations, of post-translational modifications, and of affinities for Ca 2+ , Zn 2+ , and Cu 2+ , consistent with their pleiotropic intra- and extracellular functions. Up to 40 target proteins are reported to interact with S100 proteins and for S100A1 alone 15 target proteins are presently known. Therefore it is not surprising that many functional roles have been proposed and that several human disorders such as cancer, neurodegenerative diseases, cardiomyopathies, inflammations, diabetes, and allergies are associated with an altered expression of S100 proteins. It is not unlikely that their biological activity in some cases is regulated by Zn 2+ and Cu 2+ , rather than by Ca 2+ Despite the numerous putative functions of S100 proteins, their three-dimensional structures of, e.g., S100B, S100A6, and S100A7 are surprisingly similar. They contain a compact dimerization domain whose conformation is rather insensitive to Ca 2+ binding and two lateral a-helices III and III, which project outward of each subunit when Ca 2+ is bound. Target docking depends on the two hydrophobic patches in front of the paired EF-hand generated by the binding of Ca 2+. The selec-tivity in target binding is assured by the central linker between the two EF-hands and the C-terminal tail. It appears that the S100-binding domain in some target proteins contains a basic amphiphilic a-helix and that the mode of interaction and activation bears structural similarity to that of calmodulin.© Kluwer Academic Publishers 相似文献
10.
Intraneuronal calcium ([Ca(2+)](i)) regulation is altered in aging brain, possibly because of the changes in critical Ca(2+) transporters. We previously reported that the levels of the plasma membrane Ca(2+)-ATPase (PMCA) and the V(max) for enzyme activity are significantly reduced in synaptic membranes in aging rat brain. The goal of these studies was to use RNA(i) techniques to suppress expression of a major neuronal isoform, PMCA2, in neurons in culture to determine the potential functional consequences of a decrease in PMCA activity. Embryonic rat brain neurons and SH-SY5Y neuroblastoma cells were transfected with in vitro--transcribed short interfering RNA or a short hairpin RNA expressing vector, respectively, leading to 80% suppression of PMCA2 expression within 48 h. Fluorescence ratio imaging of free [Ca(2+)](i) revealed that primary neurons with reduced PMCA2 expression had higher basal [Ca(2+)](i), slower recovery from KCl-induced Ca(2+) transients, and incomplete return to pre-stimulation Ca(2+) levels. Primary neurons and SH-SY5Y cells with PMCA2 suppression both exhibited significantly greater vulnerability to the toxicity of various stresses. Our results indicate that a loss of PMCA such as occurs in aging brain likely leads to subtle disruptions in normal Ca(2+) signaling and enhanced susceptibility to stresses that can alter the regulation of Ca(2+) homeostasis. 相似文献
11.
Sidney Katz Basil D. Roufogalis Amiram D. Landman Larry Ho 《Journal of cellular biochemistry》1979,10(2):215-225
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form. 相似文献
12.
将水培后盆栽的花生幼苗,置于培养箱42℃高温培养,定时测定幼苗叶光合速率、叶绿素含量和叶绿体Ca^2+-ATPase、Mg^2+-ATPase的相对活性,并观察幼叶细胞内Ca^2+分布的变化。试验结果表明:高温胁迫过程中,光合速率及叶绿素含量都随处理时间的延伸而下降,并呈显著正相关;叶绿体Ca^2+-ATPase和Mg^2+-ATPase高温胁迫过程中相对活性呈先升后降趋势,Ca^2+-ATPase热敏性高于Mg^2+-ATPase;高温胁迫过程中,Ca^2+具有从胞外转运到胞质内和叶绿体中的趋势,Ca^2+能够稳定高温胁迫下叶肉细胞膜和叶绿体的超微结构。 相似文献
13.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell. 相似文献
14.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999 相似文献
15.
骨骼肌内质网Ca2+泵转运Ca2+的结构基础 总被引:1,自引:0,他引:1
Ca2 泵(Ca2 -ATPase)是调节细胞内Ca2 浓度的重要蛋白质之一.Ca2 泵在转运Ca2 的过程中经历一系列构象变化.其中,E1状态为外向的Ca2 高亲和状态,E2状态则为内向的Ca2 低亲和状态.目前,骨骼肌内质网Ca2 泵转运Ca2 过程中的几个中间状态,包括E1-2Ca2 ,E1-ATP,E1-P-ADP,E2-Pi和E2状态的三维晶体结构已经解析.介绍这几种状态的晶体结构,并分析Ca2 泵在执行功能过程中结构与功能的关系. 相似文献
16.
Usachev YM Toutenhoofd SL Goellner GM Strehler EE Thayer SA 《Journal of neurochemistry》2001,76(6):1756-1765
Precise regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) is achieved by the coordinated function of Ca(2+) channels and Ca(2+) buffers. Neuronal differentiation induces up-regulation of Ca(2+) channels. However, little is known about the effects of differentiation on the expression of the plasma membrane Ca(2+)-ATPase (PMCA), the principal Ca(2+) extrusion mechanism in neurons. In this study, we examined the regulation of PMCA expression during differentiation of the human neuroblastoma cell line IMR-32. [Ca(2+)](i) was monitored in single cells using indo-1 microfluorimetry. When the Ca(2+)-ATPase of the endoplasmic reticulum was blocked by cyclopiazonic acid, [Ca(2+)](i) recovery after small depolarization-induced Ca(2+) loads was governed primarily by PMCAs. [Ca(2+)](i) returned to baseline by a process described by a monoexponential function in undifferentiated cells (tau = 52 +/- 4 s; n = 25). After differentiation for 12-16 days, the [Ca(2+)](i) recovery rate increased by more than threefold (tau = 17 +/- 1 s; n = 31). Western blots showed a pronounced increase in expression of three major PMCA isoforms in IMR-32 cells during differentiation, including PMCA2, PMCA3 and PMCA4. These results demonstrate up-regulation of PMCAs on the functional and protein level during neuronal differentiation in vitro. Parallel amplification of Ca(2+) influx and efflux pathways may enable differentiated neurons to precisely localize Ca(2+) signals in time and space. 相似文献
17.
With a specially constructed chamber, Ca2+ uptake by mouse spermatozoa was monitored continuously during capacitation and the acrosome reaction. It was shown, using calcium ion-selective microelectrodes, that there was an initial uptake of Ca2+ by spermatozoa undergoing capacitation. Such net transport was also promoted by the divalent cation ionophores A23187 or ionomycin. An anion inhibitor, SITS, produced dose-dependent inhibition of Ca2+ uptake. This inhibitor reduced the incidence of capacitation as revealed by a reduction in the B pattern by chlortetracycline (CTC) assay and thus inhibited fertilization, suggesting that anions are involved in calcium uptake in mouse spermatozoa. 相似文献
18.
Intracellular Ca2+ is an important regulator of many cellular processes. Besides ion channels and transporters in the plasmalemma, changes in [Ca]i can be mediated by uptake and release mechanisms of internal organelles. Theoretical and experimental procedures are developed aiming to reveal the distribution of internal Ca2+ pools and their role in generating complicated spatial patterns of [Ca]i gradients. Cultured pyramidal neurons from rat hippocampus were loaded with Ca2+-sensitive fluorescent dyes, fura-2 and fluo-3. Cell images were partitioned according to pixel amplitude and highlighted pictures were characterized by their intensity, relative area and connectivity. This approach facilitates the localization of the sites of Ca2+ release from internal stores induced by application of different agents. After each trial, neurons were stained with dyes, acridine orange or DiOC6, which bind preferentially to nucleus and endoplasmic reticulum. A correlation between images confirmed the spatial localization of Ca2+ release sites. Application of the partition procedure also gave a clear evidence for the importance of Ca2+ influx in the mechanism of [Ca]i oscillations. 相似文献
19.
目的:建立膀胱逼尿肌不稳定的大鼠模型并初步研究逼尿肌T型钙通道亚型的表达。方法:以增加膀胱出口梗阻的方法诱导膀胱逼尿肌不稳定的出现;以RT-PCR的方法检测正常膀胱和不稳定膀胱逼尿肌上T通道亚型的表达。结果:梗阻后5、6周逼尿肌不稳定发生率高且稳定;不稳定逼尿肌细胞与正常逼尿肌细胞均有α1I亚型表达且无数量差异,逼尿肌细胞有α1G亚型的表达,而正常逼尿肌上无此亚型表达。结论:梗阻第5、6周的动物是用来研究DI产生机制的良好模型;α1G亚型可能与逼尿肌不稳定的发生具有一定关系。 相似文献
20.
Contributions of L-, N-, and P/Q-type voltage-operated Ca2+ channels to two responses of bovine adrenal chromaffin cells have been studied using the nonreceptor stimulus K+ depolarization. Tyrosine hydroxylase activity and catecholamine secretion were both increased by K+ over a similar concentration range and in a Ca(2+)-dependent manner. At a submaximal concentration of 20 mM K+, tyrosine hydroxylase activation was reduced by nitrendipine but unaffected individually by (+/-)-Bay K 8644, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. It was fully blocked by combined inhibition of L-, N-, and P/Q-type channels. With a maximal concentration of 50 mM K+, tyrosine hydroxylase activation was unaffected by nitrendipine as well as by each of the other drugs on its own; however, it was reduced by 71 % by combined inhibition of L-, N-, and P/Q-type channels. In contrast, catecholamine secretion with both 20 and 50 mM K+ was enhanced by (+/-)-Bay K 8644, partially inhibited by nitrendipine and omega-conotoxin MVIIC, and completely blocked by a combination of antagonists for L-, N-, and P/Q-type channels. The results show that Ca2+ entry through voltage-operated Ca2+ channels can differentially regulate distinct chromaffin cell responses and that this is an intrinsic property of the mechanisms by which Ca2+ entry activates these responses. It is not dependent on the parallel activation of other signaling events by receptors. 相似文献