首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The far-ultraviolet circular dichroism (CD) spectra of the extracellular portion (papain-cleaved fragment) of the histocompatibility antigen H-2Kb and its noncovalently associated components, heavy chain and beta 2-microglobulin (beta 2m), indicate that the antigen is highly structured, containing about 30% alpha-helix, 41% beta-sheet, and 29% random coil. Separation of beta 2m from the heavy chain produced a decrease in heavy chain alpha-helix and beta-sheet structure which correlated with a loss of alloantigenic reactivity. Reconstitution of the heavy chain-beta 2m complex resulted in an increase in secondary structure which was greater than the sum of the free chains and the recovery of considerable alloantigenic reactivity. This suggests that some of the secondary structure and much of the alloantigenic reactivity may depend on conformation associated with the binding of beta 2m to heavy chain. A prediction of heavy chain secondary structure based on Chou-Fasman analysis of the primary amino acid sequence agreed with results from CD measurements and suggested that the segments of alpha-helix and beta-sheet structure are distributed throughout the molecule.  相似文献   

2.
Infrared spectroscopy (IR) and differential scanning calorimetry (DSC) were used to study the biophysical properties of the PKCepsilon-C2 domain, a C2 domain that possess special characteristics as it binds to acidic phospholipids in a Ca2+-independent manner and no structural information about it is available to date. When the secondary structure was determined by IR spectroscopy in H2O and D2O buffers, beta sheet was seen to be the major structural component. Spectroscopic studies of the thermal denaturation in D2O showed a broadening in the amide I' band starting at 45 degrees C. Curve fitting analysis of the spectra demonstrated that two components appear upon thermal denaturation, one at 1623 cm(-1) which was assigned to aggregation and a second one at 1645 cm(-1), which was assigned to unordered or open loop structures. A lipid binding assay has demonstrated that PKCepsilon-C2 domain has preferential affinity for PIP2 although it exhibits maximal binding activity for phosphatidic acid when 100 mol% of this negatively charged phospholipid was used. Thus, phosphatidic acid containing vesicles were used to characterize the effect of lipid binding on the secondary structure and thermal stability. These experiments showed that the secondary structure did not change upon lipid binding and the thermal stability was very high with no significant changes occurring in the secondary structure after heating. DSC experiments demonstrated that when the C2-protein was scanned alone, it showed a Tm of 49 degrees C and a calorimetric denaturation enthalpy of 144.318 kJ x mol(-1). However, when phoshatidic acid vesicles were included in the mixture, the transition disappeared and further IR experiments demonstrated that the protein structure was not modified under these conditions.  相似文献   

3.
Expression of beta2 microglobulin (beta2m) in Escherichia coli resulted in formation of inclusion bodies. Attenuated total reflectance Fourier transform infrared analysis suggested a native-like secondary structure of beta2m in the inclusion bodies. Nondenaturing solubilization of the native-like beta2m from inclusion bodies was achieved using L-arginine solution, which enables an efficient recovery of beta2m with little aggregation. Greater beta2m solubilization from inclusion bodies was obtained at higher temperatures. Low-temperature solubilization yielded beta2m with fluorescence properties identical to those of native beta2m, but its secondary structure was slightly nonnative. Solubilization at moderate temperature gave beta2m with an apparently native structure. We propose an efficient nondenaturing solubilization method combining L-arginine and moderate temperature.  相似文献   

4.
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.  相似文献   

5.
Proteolysis of the beta 2-subunit of Escherichia coli tryptophan synthase by the endoproteinase Glu C from Staphylococcus aureus V8 yields a peptide, F2, corresponding to the C-terminal 101 residues of the beta-chain. The conformation and stability of isolated F2 in phosphate buffer at pH 7.8 (where native beta 2 is stable) have been investigated. Circular dichroism spectra in the far-UV showed the presence of large amounts of secondary structure (19% alpha-helices, 34% extended beta-structures). Circular dichroism spectra in the near-UV and sedimentation velocity studies indicated an open globular structure with the aromatic side chains in a symmetric (or disordered) environment. NMR spectra and rates of amide proton exchange showed that F2 fluctuates rapidly between several conformations. The thermal denaturation of F2 observed by the loss of far-UV circular dichroism with increasing temperature appeared noncooperative, and indicates a high thermal stability (Tm = 70 degrees C). Differential scanning microcalorimetry confirmed the absence of cooperativity and indicated a very low value for the calorimetric enthalpy of denaturation (delta H = 17 kJ/mol). All these properties were compatible with a molten globule. However, the low sedimentation coefficient of F2 suggested a very hydrated and/or expanded structure, and the secondary structure content of isolated F2 (see above) differed widely from that reported in the literature for F2 within the context of native beta 2 (49% alpha-helices and 13% extended beta-structures). Thus, neither the secondary nor the tertiary structure of isolated F2 resembled those of native F2. In this respect, isolated F2 is not a "molten globule".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
aIF2 beta is the archaeal homolog of eIF2 beta, a member of the eIF2 heterotrimeric complex, implicated in the delivery of Met-tRNA(i)(Met) to the 40S ribosomal subunit. We have determined the solution structure of the intact beta-subunit of aIF2 from Methanobacterium thermoautotrophicum. aIF2 beta is composed of an unfolded N terminus, a mixed alpha/beta core domain and a C-terminal zinc finger. NMR data shows the two folded domains display restricted mobility with respect to each other. Analysis of the aIF2 gamma structure docked to tRNA allowed the identification of a putative binding site for the beta-subunit in the ternary translation complex. Based on structural similarity and biochemical data, a role for the different secondary structure elements is suggested.  相似文献   

7.
By use of six highly purified exoglycosidases with well-defined specificity, the oligosaccharide units of human plasma beta 2-glycoprotein I (beta 2I) were modified by sequential enzymatic degradation. The released monosaccharides (NeuAc, Gal, GlcNAc, and Man) were quantified, and the carbohydrate compositions of the resulting glycoprotein (gp) derivatives were determined. The gp was found to be both partially sialylated and galactosylated. These findings which are in agreement with earlier reports suggest that the carbohydrate moiety of beta 2I possesses more bi- than tri-antennas, probably three of the former and two of the latter carbohydrate units. Circular dichroic (CD) spectra of native beta 2I and its derivatives were measured in aqueous buffer and 2-chloroethanol (2-CE). Analysis of these spectra for elements of secondary structure showed beta 2I and most of the derivatives to contain predominantly beta-sheet and beta-turn structures. The lack of alpha-helical structures in aqueous buffer was noted. Removal of a large portion of the carbohydrate moiety did not alter the CD spectra or secondary structure of beta 2I in either aqueous buffer or in 2-CE. However, after enzymatic removal of approximately 96% of the carbohydrate moiety, large significant changes in the spectra and secondary structures were observed. In aqueous buffer a shift in the wavelength minimum occurred, accompanied by an increase in the magnitude of the molar ellipticity and the amount of beta-turn, with a reduction in random coil. One-third of the amino acids which were originally in random coil conformation assumed beta-turns after removal of 96% of the carbohydrate moiety.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The isolated, 101-residue long C-terminal (so called F2) fragment of the beta chain from Escherichia coli tryptophan synthase was shown previously to fold into an ensemble of conformations that are condensed, to contain large amounts of highly dynamic secondary structures, and to behave as a good model of structured intermediates that form at the very early stages of protein folding. Here, solvent perturbations were used to investigate the forces that are involved in stabilizing the secondary structure (monitored by far-UV CD) and the condensation of the polypeptide chain (monitored by dynamic light scattering) in isolated F2. It was observed that neither the ionic strength, nor the pH (between 7 and 10), nor salts of the Hofmeister series affected the global secondary structure contents of F2, whereas some of these salts affected the collapse slightly. Addition of trifluoroethanol resulted in a large increase in both the amount of secondary structure and the Stokes radius of F2. Conversely, F2 became more condensed upon raising the temperature from 4 to 60 degrees C, whereas in this temperature range, the secondary structure undergoes significant melting. These observations lead to the conclusion that, in isolated F2, there is no coupling between the hydrophobic collapse and the secondary structure. This finding will be discussed in terms of early events in protein folding.  相似文献   

9.
beta 2-Glycoprotein I (beta 2GI) has recently been identified as a component of circulating plasma lipoproteins. The metabolic role of this apolipoprotein is not known with certainty; it has been reported that beta 2GI has a high affinity for triglyceride-rich particles, causing their selective precipitation by detergents, and activates lipoprotein lipase in the in vitro hydrolysis of artificial lipid emulsions. In the present report, we have evaluated the secondary, tertiary, and quaternary structure of lipid-free beta 2GI. The weight average molecular weight of beta 2GI, as determined by sedimentation equilibrium measurements, was 43,000 in the presence and absence of denaturing agents. Thus, in contrast to other apolipoproteins, apolipoprotein H (apo-H) does not self-associate in aqueous solution. The circular dichroic spectra of apo-H is unusual in that there are no strong negative bands in the far-ultraviolet region of the spectrum; there is a weak positive maximum at 235 nm and a relatively weak negative maximum at 205 nm. Treatment with guanidinium chloride results in a loss of the positive band with only minor changes in the intensity of the band at 205 nm. Apolipoproteins A-I, A-II, C-I, and E, in contrast, have a secondary structure that contains a high percentage of residues in an alpha-helical configuration and undergo major changes in structure at low concentrations of guanidinium chloride. Highly flexible proteins, such as apolipoproteins A-I, A-II, and C-I, absorb rapidly and reversibly to air-water interfaces, whereas more rigid proteins, such as the classical globular proteins, interact with the interface more slowly and irreversibly. This difference is due to the loosely folded tertiary structure of apolipoproteins and the ease with which they can change structure to accommodate a given environment. The surface activity of beta 2GI at neutral pH resembles that of typical globular proteins. Treatment with acid or base, although causing only minor changes in the circular dichroic spectra, resulted in major increases in the rate of absorption to an air-water interface; under these conditions the rates of absorption were similar to that found for apolipoprotein A-I. These results are consistent with a more flexible structure for beta 2GI in acid or base that resembles other loosely folded apolipoproteins. beta 2GI associates with plasma lipoproteins and satisfies all of the criteria to be classified as an apolipoprotein. The secondary, tertiary, and quaternary structure of beta 2GI is, however, quite different from that of other well characterized apolipoproteins. This difference in structure would be expected to affect protein-lipid interactions; the relationship between apo-H and other apolipoproteins may be similar to that proposed for integral versus peripheral membrane proteins.  相似文献   

10.
The troponin C superfamily consists of about 100 Ca2+-binding proteins. Sequence variations observed in these proteins have been analyzed and lead to the following conclusions. (1) There are some strict rules defining the set of calcium ligands necessary for effective Ca2+ binding. (2) If they are fulfilled, the Ca2+ binding constant depends on tertiary interactions within a protein, as well as the free energy of secondary structures of its polypeptide chain. The former provide a constant contribution to the free energy of protein folding and the Ca2+-binding process. (3) The observed variety in Ca2+-binding constants of these proteins results from the various abilities of segments of these proteins to assume the correct secondary structure.  相似文献   

11.
Human cystatin C (HCC), one of the amyloidgenic proteins, has been proved to form a dimeric structure via a domain swapping process and then cause amyloid deposits in the brains of patients suffering from Alzheimer's disease. HCC monomer consists of a core with a five-stranded antiparallel beta-sheet (beta region) wrapped around a central helix. The connectivity of these secondary structures is: (N)-beta1-alpha-beta2-L1-beta3-AS-beta4-L2-beta5-(C). In this study, various molecular dynamics simulations were conducted to investigate the conformational changes of the monomeric HCC at different temperatures (300 and 500 K) and pH levels (2, 4, and 7) to gain insight into the domain swapping mechanism. The results show that high temperature (500 K) and low pH (pH 2) will trigger the domain swapping process of HCC. We further proposed that the domain swapping mechanism of HCC follows four steps: (1) the alpha-helix moves away from the beta region; (2) the contacts between beta2 and beta3-AS disappear; (3) the beta2-L1-beta3 hairpin unfolds following the so-called "zip-up" mechanism; and finally (4) the HCC dimer is formed. Our study shows that high temperature can accelerate the unfolding of HCC and the departure of the alpha-helix from the beta-region, especially at low pH value. This is attributed to the fact that that low pH results in the protonation of the side chains of Asp, Glu, and His residues, which further disrupts the following four salt-bridge interactions stabilizing the alpha-beta interface of the native structure: Asp15-Arg53 (beta1-beta2), Glu21/20-Lys54 (helix-beta2), Asp40-Arg70 (helix-AS), and His43-Asp81 (beta2-AS).  相似文献   

12.
Extension of synthetic primers by purified human polymerase alpha (Hpol alpha) with the (+)-strand of M13mp18 DNA as template encounters numerous specific pause sites on the M13 template. Some of these are regions of template secondary structure, at others the template codes for incorporation of the same base in multiple consecutive positions, but at some the responsible feature in the sequence is not obvious. 2-Chloro-dATP (CldATP) substitutes efficiently for dATP in such chain extension, with 2-chloroadenine (ClA) incorporation into many positions coding for A. However, there are more sites where extension is interrupted than with all four normal nucleotide substrates, particularly (but not exclusively) at template secondary structure and sites of multiple consecutive ClA insertion. DNA synthesis from normal substrates by Hpol beta in this system shows less frequent and less marked pauses, but with CldATP substituted for dATP chain extension is limited because of marked slowing of extension at sites of multiple consecutive ClA insertion. With either polymerase, the rate of extension is decreased even more at such regions when bromo-dATP is used as substrate. Some misincorporation of ClA instead of G or T can occur at certain sites in absence of the corresponding normal substrate, but misincorporation as C is rare. CldATP is a very weak inhibitor of chain extension by Hpol alpha, but a somewhat better inhibitor of Hpol beta. These results may account in part for the inhibition of DNA synthesis in cells exposed to 2-chlorodeoxyadenosine or 2-bromodeoxyadenosine.  相似文献   

13.
The following phycobiliproteins and complexes of the allophycocyanin core were isolated from phycobilisomes of the thermophilic cyanobacterium Mastigocladus laminosus: alpha AP, beta AP, (alpha AP beta AP), (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C, (alpha APB alpha AP2 beta AP3)L8.9C. The six proteins and complexes were characterised spectroscopically with respect to absorption, oscillator strength, extinction coefficient, fluorescence emission, relative quantum yield, fluorescence emission polarisation and fluorescence excitation polarisation. The interpretation of the spectral data was based on the three-dimensional structure model of (alpha PC beta PC)3 (Schirmer et al. (1985) J. Mol. Biol. 184, 257-277), which is related to the allophycocyanin trimer. The absorption and CD spectra of the complexes (alpha AP beta AP)3, (alpha AP beta AP)3L8.9C and (alpha APB alpha AP2 beta AP3)L8.9C could be deconvoluted into the spectra of the phycobiliprotein subunits. The assumptions made for the deconvolution could be checked by the synthesis of the spectra of (alpha APB beta AP)3. The synthesised spectra are in good agreement with the corresponding measured spectra published by other authors. Considering the deconvoluted spectra the following influences on the chromophores could be ascribed to L8.9C: L8.9C neither influences the alpha AP nor the alpha APB chromophores. L8.9C shifts the absorption maximum of the beta AP chromophore to longer wavelength than the absorption maximum of the alpha AP chromophore in trimeric complexes. L8.9C increases the oszillator strength of the beta AP chromophores to about the value of the alpha AP chromophores in trimeric complexes. L8.9C turns the beta AP chromophores from sensitizing into weak fluorescing chromophores. By means of the hydropathy plot and the predicted secondary structure, a postulated three-fold symmetry in the tertiary structure of L8.9C could be confirmed.  相似文献   

14.
BACKGROUND: The p13suc1 gene product is a member of the cks (cyclin-dependent protein kinase subunit) protein family and has been implicated in regulation of the cell cycle. Various crystal structures of suc1 are available, including a globular, monomeric form and a beta-strand exchanged dimer. It has been suggested that conversions between these forms, and perhaps others, may be important in the regulation of the cell cycle. RESULTS: We have undertaken molecular dynamics simulations of protein unfolding to investigate the conformational properties of suc1. Unfolding transition states were identified for each of four simulations. These states contain some native secondary structure, primarily helix alpha1 and the core of the beta sheet. The hydrophobic core is loosely packed. Further unfolding leads to an intermediate state that is slightly more expanded than the transition state, but with considerably fewer nonlocal, tertiary packing contacts and less secondary structure. The helices are fluctuating but partially formed in the denatured state and beta2 and beta4 remain associated. CONCLUSIONS: It appears that suc1 folds by a nucleation-condensation mechanism, similar to that observed for two-state folding proteins. However, suc1 forms an intermediate during unfolding and contains considerable residual structure in the denatured state. The stability of the beta2-beta4 residual structure is surprising, because beta4 is the strand involved in domain swapping. This stability suggests that the domain-swapping event, if physiologically relevant, may require the assistance of additional factors in vivo or occur early in the folding process.  相似文献   

15.
C2 toxin from Clostridium botulinum is composed of the enzyme component C2-I, which ADP-ribosylates actin, and the binding and translocation component C2-II, responsible for the interaction with eukaryotic cell receptors and the following endocytosis. Three C2-I crystal structures at resolutions of up to 1.75 A are presented together with a crystal structure of C2-II at an appreciably lower resolution and a model of the prepore formed by fragment C2-IIa. The C2-I structure was determined at pH 3.0 and at pH 6.1. The structural differences are small, indicating that C2-I does not unfold, even at a pH value as low as 3.0. The ADP-ribosyl transferase activity of C2-I was determined for alpha and beta/gamma-actin and related to that of Iota toxin and of mutant S361R of C2-I that introduced the arginine observed in Iota toxin. The substantial activity differences between alpha and beta/gamma-actin cannot be explained by the protein structures currently available. The structure of the transport component C2-II at pH 4.3 was established by molecular replacement using a model of the protective antigen of anthrax toxin at pH 6.0. The C-terminal receptor-binding domain of C2-II could not be located but was present in the crystals. It may be mobile. The relative orientation and positions of the four other domains of C2-II do not differ much from those of the protective antigen, indicating that no large conformational changes occur between pH 4.3 and pH 6.0. A model of the C2-IIa prepore structure was constructed based on the corresponding assembly of the protective antigen. It revealed a surprisingly large number of asparagine residues lining the pore. The interaction between C2-I and C2-IIa and the translocation of C2-I into the target cell are discussed.  相似文献   

16.
The eukaryotic acidic P1 and P2 proteins modulate the activity of the ribosomal stalk but playing distinct roles. The aim of this work was to analyze the structural features that are behind their different function. A structural characterization of Saccharomyces cerevisaie P1 alpha and P2 beta proteins was performed by circular dichroism, nuclear magnetic resonance, fluorescence spectroscopy, thermal denaturation, and protease sensitivity. The results confirm the low structure present in both proteins but reveal clear differences between them. P1 alpha shows a virtually unordered secondary structure with a residual helical content that disappears below 30 degrees C and a clear tendency to acquire secondary structure at low pH and in the presence of trifluoroethanol. In agreement with this higher disorder P1 alpha has a fully solvent-accessible tryptophan residue and, in contrast to P2 beta, is highly sensitive to protease degradation. An interaction between both proteins was observed, which induces an increase in the global secondary structure content of both proteins. Moreover, mixing of both proteins causes a shift of the P1 alpha tryptophan 40 signal, pointing to an involvement of this region in the interaction. This evidence directly proves an interaction between P1 alpha and P2 beta before ribosome binding and suggests a functional complementation between them. On a whole, the results provide structural support for the different functional roles played by the proteins of the two groups showing, at the same time, that relatively small structural differences between the two stalk acidic protein types can result in significant functional changes.  相似文献   

17.
Parsons LM  Yeh DC  Orban J 《Proteins》2004,54(3):375-383
The solution structure of the acidic protein HI1450 from Haemophilus influenzae has been determined by NMR spectroscopy. HI1450 has homologues in ten other bacterial species including Escherichia coli, Vibrio cholerae, and Yersinia pestis but there are no functional assignments for any members of the family. Thirty-one of the amino acids in this 107-residue protein are aspartates or glutamates, contributing to an unusually low pI of 3.72. The secondary structure elements are arranged in an alpha-alpha-beta-beta-beta-beta order with the two alpha helices packed against the same side of an anti-parallel four-stranded beta meander. Two large loops, one between beta1 and beta2 and the other between beta2 and beta3 bend almost perpendicularly across the beta-strands in opposite directions on the non-helical side of the beta-sheet to form a conserved hydrophobic cavity. The HI1450 structure has some similarities to the structure of the double-stranded DNA (dsDNA) mimic uracil DNA glycosylase inhibitor (Ugi) including the distribution of surface charges and the position of the hydrophobic cavity. Based on these similarities, as well as having a comparable molecular surface to dsDNA, we propose that HI1450 may function as a dsDNA mimic in order to inhibit or regulate an as yet unidentified dsDNA binding protein.  相似文献   

18.
We have now demonstrated that activated complement component C1s cleaves beta 2-microglobulin at the position identical to that at which beta 2-microglobulin is cleaved in serum of patients suffering from lung cancer. The main cleavage is in the disulphide loop C-terminal to Lys-58, generating a modified form of beta 2-microglobulin with a two-chain structure. The C-terminal Lys-58 in the A chain is highly susceptible to removal by a carboxypeptidase-B-like activity causing the formation of des-Lys58-beta 2-microglobulin. This is the first demonstration of a noncomplement protein substrate for the proteolytic activity of C1s. The C1s-induced cleavage of beta 2-microglobulin can be inhibited in the presence of C1 esterase inhibitor, demonstrating a regulatory function of C1 esterase inhibitor in the C1s-induced cleavage of beta 2-microglobulin.  相似文献   

19.
The independently folding C2 domain motif serves as a Ca(2+)-dependent membrane docking trigger in a large number of Ca(2+) signaling pathways. A comparison was initiated between three closely related C2 domains from the conventional protein kinase C subfamily (cPKC, isoforms alpha, beta, and gamma). The results reveal that these C2 domain isoforms exhibit some similarities but are specialized in important ways, including different Ca(2+) stoichiometries. In the absence of membranes, Ca(2+) affinities of the isolated C2 domains are similar (2-fold difference) while Hill coefficients reveal cooperative Ca(2+) binding for the PKC beta C2 domain but not for the PKC alpha or PKC gamma C2 domain (H = 2.3 +/- 0.1 for PKC beta, 0.9 +/- 0.1 for PKC alpha, and 0.9 +/- 0.1 for PKC gamma). When phosphatidylserine-containing membranes are present, Ca(2+) affinities range from the sub-micromolar to the micromolar (7-fold difference) ([Ca(2+)](1/2) = 0.7 +/- 0.1 microM for PKC gamma, 1.4 +/- 0.1 microM for PKC alpha, and 5.0 +/- 0.2 microM for PKC beta), and cooperative Ca(2+) binding is observed for all three C2 domains (Hill coefficients equal 1.8 +/- 0.1 for PKC beta, 1.3 +/- 0.1 for PKC alpha, and 1.4 +/- 0.1 for PKC gamma). The large effects of membranes are consistent with a coupled Ca(2+) and membrane binding equilibrium, and with a direct role of the phospholipid in stabilizing bound Ca(2+). The net negative charge of the phospholipid is more important to membrane affinity than its headgroup structure, although a slight preference for phosphatidylserine is observed over other anionic phospholipids. The Ca(2+) stoichiometries of the membrane-bound C2 domains are detectably different. PKC beta and PKC gamma each bind three Ca(2+) ions in the membrane-associated state; membrane-bound PKC alpha binds two Ca(2+) ions, and a third binds weakly or not at all under physiological conditions. Overall, the results indicate that conventional PKC C2 domains first bind a subset of the final Ca(2+) ions in solution, and then associate weakly with the membrane and bind additional Ca(2+) ions to yield a stronger membrane interaction in the fully assembled tertiary complex. The full complement of Ca(2+) ions is needed for tight binding to the membrane. Thus, even though the three C2 domains are 64% identical, differences in Ca(2+) affinity, stoichiometry, and cooperativity are observed, demonstrating that these closely related C2 domains are specialized for their individual functions and contexts.  相似文献   

20.
Many therapeutic biologics are formulated with excipients, including the protein excipient human serum albumin (HSA), to increase stability and prevent protein aggregation and adsorption onto glass vials. One biologic formulated with albumin is interferon alpha-2b (IFN α-2b). As is the case with other therapeutic biologics, the increased structural complexity of IFN α-2b compared to a small molecule drug requires that both the correct chemical structure (amino acid sequence) and also the correct secondary and tertiary structures (3 dimensional fold) be verified to assure safety and efficacy. Although numerous techniques are available to assess a biologic's primary, secondary and tertiary structures, difficulties arise when assessing higher order structure in the presence of protein excipients. In these studies far UV circular dichroism spectropolarimetry (far UV-CD) was used to determine the secondary structure of IFN α-2b in the presence of a protein excipient (bovine serum albumin, BSA). We demonstrated that the secondary structure of IFN α-2b remains mostly unchanged at a variety of BSA to IFN α-2b protein ratios. A significant difference in alpha helix and beta sheet content was noted when the BSA to IFN α-2b ratio was 5:1 (w/w), suggesting a potential conformational change in IFN α-2b secondary structure when BSA is in molar excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号