首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Glucocorticoids decrease type I procollagen synthesis by decreasing the steady state levels of procollagen mRNAs and mRNA synthesis. The present studies were undertaken to determine the functional sequences of the pro alpha 2(I) collagen gene required for the glucocorticoid-mediated decrease of type I procollagen mRNA synthesis. Embryonic mouse fibroblasts were stably transfected with the pR40 DNA CAT construct containing the 5' flanking region fragment from -2048 to +54 and the intronic fragment from +418 to +1524 of the mouse alpha 2(I) collagen gene. Dexamethasone treatment of these pR40 transfected fibroblasts resulted in a significant decrease in CAT activity which agrees with the glucocorticoid-mediated decrease of the steady state levels of type I procollagen mRNAs. To determine the possible role of the first intron fragment in the dexamethasone-mediated decrease of CAT activity, pR36, a CAT plasmid containing the first intron fragment and the SV40 early promoter, was transfected into mouse fibroblasts and treated with dexamethasone. No significant decrease in CAT activity was observed. The dexamethasone-mediated response was then localized within the 5' flanking region by preparing a series of constructs containing internal deletions and transfecting these plasmids into mouse fibroblasts. The regions -2048 to -981 and -506 to -351 were required for the dexamethasone response of gene activity. However, the DNA stretch from -981 to -506 was not. Analysis of the DNA sequences of these regions revealed a single GRE at -1023 to -1018 and a modified doublet at -873 to -856.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
The Dexras1 gene responds to glucocorticoids with a rapid and profound induction. A glucocorticoid response element (GRE) was identified in the 3'-flanking region (2.3 kb downstream of poly(A) signal) of the human Dexras1 gene. This element conferred rapid glucocorticoid responsiveness when inserted into a homologous promoter-driven luciferase reporter. A point mutation within the 15-bp GRE abolished this glucocorticoid responsiveness.  相似文献   

5.
6.
7.
8.
9.
10.
Genes encoding enzymes involved in gluconeogenesis are activated in liver shortly after birth by the synergistic effect of glucagon and glucocorticoids. This induction is achieved by the synergistic action of hormone responsive and liver-specific enhancer elements. In the case of glucocorticoids, this enhancer is composed of a glucocorticoid-response element (GRE) and a number of cell-specific hepatocyte nuclear factor 3 (HNF-3) binding sites. The GRE binds the ligand-activated glucocorticoid receptor (GR) which is ubiquitously expressed and the HNF-3 element binds a cell-specific protein factor. To further understand the role of cell-specific glucocorticoid signalling in the perinatal period and earlier during development we have studied the expression of the mouse GR gene. The gene has been cloned and fully characterized. Expression of the gene is controlled by at least three promoters, one of which is only active in T-lymphocytes. Expression of GR mRNA has been detected back to day 9.5 of mouse development. The role of GR during mouse development has been further analysed by disruption of the GR gene in vivo by homologous recombination in mouse embryonic stem cells.  相似文献   

11.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

12.
13.
Glucocorticoid in excess produces bone loss in vivo. Consistent with this, it reduces the stimulatory effect of transforming growth factor β (TGF-β) on collagen synthesis in osteoblast-enriched cultures in vitro, where it also suppresses TGF-β binding to its type I receptors. Analogous studies with bone morphogenetic protein-2 (BMP-2) show directly opposite results. These findings prompted us to assess the effect of glucocorticoid on BMP-2 activity in cultured bone cells, and whether either agent had a dominant influence on TGF-β binding or function. BMP-2 activity was retained in part in osteoblast-enriched cultures pre-treated or co-treated with cortisol, and was fully evident when glucocorticoid exposure followed BMP-2 treatment. In addition, BMP-2 suppressed the effects of cortisol on TGF-β activity, on TGF-β binding, and on gene promoter activity directed by a glucocorticoid sensitive transfection construct. While BMP-2 also alters the function of less-differentiated bone cells, it only minimally prevented cortisol activity in these cultures. Our studies indicate that BMP-2 can oppose certain effects by cortisol on differentiated osteoblasts, and may reveal useful ways to diminish glucocorticoid-dependent bone wasting. J. Cell. Biochem. 67:528–540, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
增殖性瘢痕组织中胶原蛋白的合成显著增加从而导致胶原的过度沉积。利用核酶特异地抑制前胶原基因的表达可减少胶原蛋白的合成,为瘢痕的研究和防治提供了新的思路。为研究用核酶抑制前胶原基因表达的可能及效果,设计并构建了针对α1(I)型及α1(Ⅲ)型前胶原基因的二个单价核酶串联的二联核酶基因真核表达载体,并对其体外切割活性 进行研究。结果表明该二联核酶的切割效果明显,均能有效地切割底物,为进一步研究核酶的前胶原基因表达的抑制作用以及利用核酶防治瘢痕产生打下基础。  相似文献   

17.
18.
19.
20.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233–242, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号