首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of transformed mouse fibroblasts (3T6 cells) in medium containing 5% fetal bovine serum was inhibited after treatment with concentrations greater than 50 microM ATP, ADP, or AMP. Adenosine, the common catabolite of the nucleotides, had no effect on cell growth at concentrations below 1 mM. However, the following results indicate that the toxicity of ATP, ADP, and AMP is mediated by serum- and cell-associated hydrolysis of the nucleotides to adenosine. 1) ADP and AMP, but not ATP, were toxic to 3T6 cells grown in serum-free medium or medium in which phosphohydrolase activity of serum was inactivated. Under these conditions, the cells exhibited cell-associated ADPase and 5'-nucleotidase activity, but little ecto-ATPase activity. 2) Inhibition of adenosine transport in 3T6 cells by dipyridamole or S-(p-nitrobenzyl)-6-thioinosine prevented the toxicity of ATP in serum-containing medium and of ADP and AMP in serum-free medium. 3) A 16-24-h exposure to 125 microM AMP or ATP was needed to inhibit cell growth under conditions where serum- and cell-associated hydrolysis of the nucleotides generated adenosine in the medium continuously over the same time period. In contrast, 125 microM adenosine was completely degraded to inosine and hypoxanthine within 8-10 h. Furthermore, multiple doses of adenosine added to the cells at regular intervals over a 16-h period were significantly more toxic than an equivalent amount of adenosine added in one dose. Treatment of 3T6 cells with AMP elevated intracellular ATP and ADP levels and reduced intracellular UTP levels, effects which were inhibited by extracellular uridine. Uridine also prevented growth inhibition by ATP, ADP, and AMP. These and other results indicate that serum- and cell-associated hydrolysis of adenine nucleotides to adenosine suppresses growth by adenosine-dependent pyrimidine starvation.  相似文献   

2.
ATP in the mechanotransduction pathway of normal human chondrocytes   总被引:5,自引:0,他引:5  
Extracellular nucleotides have been shown to have diverse effects on chondrocyte function, generally acting via P2 purinoceptors. We have previously shown that mechanical stimulation at 0.33 Hz of normal human chondrocyte cultures causes cellular hyperpolarisation, while chondrocytes derived from osteoarthritic (OA) cartilage depolarise. Experiments have been undertaken to establish whether ATP is involved in the response of the chondrocyte to mechanical stimulation. Chondrocytes, isolated from normal and OA cartilage obtained, with consent, from human knee joints following surgery, were cultured in non-confluent monolayer. Cells were mechanically stimulated at 0.33 Hz for 20 minutes at 37 degrees C in the presence or absence of inhibitors of ATP signalling, or were stimulated by the addition of exogenous ATP or derivatives, and electrophysiological measurements recorded. Samples of medium bathing the cells were collected before and after mechanical stimulation, and the concentration of ATP in the cell medium was measured. Total RNA was extracted from cultured chondrocytes, reverse-transcribed and used for RT-PCR with primers specific for P2Y2 purinoceptors. ATP, UTP 2-methylthioadenosine and alphabeta-methylene adenosine 5'-triphosphate all induced a hyperpolarisation response in normal human articular chondrocytes. No significant change was observed in the membrane potentials of chondrocytes isolated from OA cartilage following the addition of these nucleotides to the medium. In normal chondrocytes, the hyperpolarisation induced by ATP was blocked by the presence of apamin, indicating the involvement of small-conductance calcium-activated potassium channels. Following mechanical stimulation of normal chondrocytes, an increase was observed in ATP concentration in the cell culture medium bathing the cells. The presence within the culture medium of suramin or pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) prior to and during the period of mechanical stimulation abolished the hyperpolarisation response in normal chondrocytes. The presence of mRNA for P2Y2 purinoceptors was demonstrated in both normal and OA chondrocytes by RT-PCR. These results suggest that ATP has a role in the response of normal chondrocytes to mechanical stimulation, via P2Y2 purinoceptors. This response appears to be different in chondrocytes derived from OA cartilage, and may be important in the progression of this disease.  相似文献   

3.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. Leishmania major promastigotes showed a large decrease in ATP and increases in ADP and AMP contents after 4 min of anaerobiosis. 2. When ADP was added to intact promastigotes, it was completely metabolized, apparently by its conversion to adenosine extracellularly followed by adenosine uptake, further metabolism intracellularly, and release of hypoxanthine. Under anaerobic conditions, adenosine uptake was strongly inhibited and ADP degradation was stopped at adenosine. 3. Under both aerobic and anaerobic conditions, ATP was released into the medium. ATP release was specific, since ADP and AMP were not detectable extracellularly even when their external degradation was inhibited with molybdate.  相似文献   

5.
1. The metabolism of extracellular nucleotides in NG108-15 cells, a neuroblastoma × glioma hybrid cell line, was studied by means of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC).2. In NG108-15 cells ATP, ADP, AMP, UTP, UDP, and UMP were hydrolyzed to the nucleosides adenosine and uridine indicating the presence of ecto-nucleotidases and ecto-phosphatases. The hydrolysis of the purine nucleotides ATP and ADP was significantly faster than the hydrolysis of the pyrimidine nucleotides UTP and UDP.3. ATP and UTP breakdown appeared to be mainly due to an ecto-nucleotide- diphosphohydrolase. ADP, but not UDP, was initially also phosphorylated to some extent to the corresponding triphosphate, indicating the presence of an adenylate kinase on NG108-15 cells. The alkaline phosphatase (ALP) inhibitor levamisole did not only inhibit the hydrolysis of AMP to adenosine and of UMP to uridine, but also the degradation of ADP and to a larger extent that of UDP. ATP and UTP degradation was only slightly inhibited by levamisole.4. These results underscore the important role of ecto-alkaline phosphatase in the metabolism of adenine as well as uracil nucleotides in NG108-15 cells. Dipyridamole, a potent inhibitor of nucleotide breakdown in superior cervical ganglion cells, had no effect on nucleotide degradation in NG108-15 cells.5. Dipyridamole, which is a therapeutically used nucleoside reuptake inhibitor in humans, reduced the extracellular adenosine accumulation possibly by allosteric enhancement of adenosine reuptake into the cells.  相似文献   

6.
We have shown previously that Escherichia coli can translocate the same protein either co- or posttranslationally and that ATP hydrolysis is essential for the posttranslational translocation of the precursors of alkaline phosphatase and OmpA protein into inverted E. coli membrane vesicles. ATP-dependent protein translocation has now been further characterized. In the absence of exogenous Mg2+, dATP, formycin A-5'-triphosphate, ATP-alpha-S, and N1-oxide-ATP could replace ATP, but many other nucleotides were not only ineffective but inhibited ATP-dependent translocation. The inhibitors included nonhydrolyzable ATP analogs, ATP-gamma-S, 8-azido-ATP, AMP, ADP, cyclic AMP, PPi, and tripolyphosphate. On the other hand, adenosine, adenosine 5'-tetraphosphate, and N1,N6-etheno-ATP neither supported nor inhibited translocation. Moreover, photoaffinity labeling of azido-adenine nucleotides rendered membranes inactive for subsequent ATP-dependent protein translocation. These results suggest that protein translocation involves at least an ATP-binding site in the membrane and hydrolysis of ATP and that both the adenosine and phosphate moieties of ATP play a role.  相似文献   

7.
Here, the extracellular interconversion of nucleotides and nucleosides was investigated in rat hippocampal slices and synaptosomes by an HPLC-UV technique. Adenosine 5′-triphosphate (ATP) was converted to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), adenosine, inosine, and hypoxanthine in the slices, whereas ADP elicited parallel and concentration-dependent formation of ATP and AMP. The specific adenylate kinase inhibitor diadenosine pentaphosphate decreased the rate of decomposition of ADP and inhibited the formation of ATP. No substantial changes in the interconversion of ADP to ATP and AMP were found in the presence of dipyridamole, flufenamic acid, the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid tetrasodium (PPADS), and the alkaline phosphatase substrate para-nitrophenylphosphate. Negligible levels of nucleotides were generated when uridine 5′-diphosphate (UDP), AMP or adenosine were used as substrates. Ecto-adenylate kinase activity was also observed in purified synaptosomes. In summary, we demonstrate the presence of an ecto-adenylate kinase activity in the hippocampus, which is a previously unrecognized pathway that influences the availability of purines in the central nervous system.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) causes severe, watery diarrhea in children. We investigated ATP release during EPEC-mediated killing of human cell lines and whether released adenine nucleotides function as secretory mediators. EPEC triggered a release of ATP from all human cell lines tested: HeLa, COS-7, and T84 (colon cells) as measured using a luciferase kit. Accumulation of ATP in the supernatant medium was enhanced if an inhibitor of 5'-ectonucleotidase was included and was further enhanced if an ATP-regenerating system was added. In the presence of the inhibitor/regenerator, ATP concentrations in the supernatant medium reached 1.5-2 microM 4 h after infection with wild-type EPEC strains. In the absence of the inhibitor/regenerator system, extracellular ATP was rapidly broken down to ADP, AMP, and adenosine. Conditioned medium from EPEC-infected cells triggered a brisk chloride secretory response in intestinal tissues studied in the Ussing chamber (rabbit distal colon and T84 cell monolayers), whereas conditioned medium from uninfected cells and sterile filtrates of EPEC bacteria did not. The short-circuit current response to EPEC-conditioned medium was completely reversed by adenosine receptor blockers, such as 8-(p-sulfophenyl)-theophylline and MRS1754. EPEC killing of host cells releases ATP, which is broken down to adenosine, which in turn stimulates secretion via apical adenosine A2b receptors. These findings provide new insight into how EPEC causes watery diarrhea.  相似文献   

9.
A method using ion-pairing liquid chromatography-mass spectrometry (MS) was developed for analyzing adenosine 5(')-monophosphate (AMP), adenosine 5(')-diphosphate (ADP), and adenosine 5(')-triphosphate (ATP) in cellular extracts. Dimethylhexylamine (DMHA) was used as ion-pairing agent to retain and separate the analytes on a reversed-phase microbore column with a gradient program. Positive-ion electrospray ionization-MS was applied for the detection because of the use of the ion-pairing agent. Adduct ions of DMHA with AMP, ADP, and ATP were found to be the most intensive peaks and thus selected as quantitative ions. An external calibration method with linear ranges from 0.1 to 20 microM for AMP, 2 to 20 microM for ADP, and 2.5 to 20 microM for ATP was used for the quantitation. The method was applied to determine concentrations of AMP, ADP, and ATP in extracts of cultured rat C6 glioma cells that were pretreated with various concentrations of Zn. The detected levels of the adenosine nucleotides have been used to calculate total adenosine nucleotide and energy charge potential. Changes in cellular energy status upon exposure to increasing concentration of Zn in the culture medium were analyzed. The results indicated that the addition of Zn in a range of 40 to 120 microg/ml cause a gradual increased in energy charge potential of the cells.  相似文献   

10.
Intact cells of Vibrio costicola hydrolyzed ATP, ADP, and AMP. The membrane-bound 5'-nucleotidase (C. Bengis-Garber and D. J. Kushner, J. Bacteriol. 146:24-32, 1981) was solely responsible for these activities, as shown by experiments with anti-5'-nucleotidase serum and with the ATP analog, adenosine 5'-(beta gamma-imido)-diphosphate. Fresh cell suspensions rapidly accumulated 8-14C-labeled adenine 5'-nucleotides and adenosine. The uptake of ATP, ADP, and AMP (but not the adenosine uptake) was inhibited by adenosine 5'-(beta gamma-imido)-diphosphate similarly to the inhibition of the 5'-nucleotidase. Furthermore, the uptake of nucleotides had Mg2+ requirements similar to those of the 5'-nucleotidase. The uptake of ATP was competitively inhibited by unlabeled adenosine and vice versa; inhibition of the adenosine uptake by ATP occurred only in the presence of Mg2+. These experiments indicated that nucleotides were dephosphorylated to adenosine before uptake. The hydrolysis of [alpha-32P]ATP as well as the uptake of free adenosine followed Michaelis-Menten kinetics. The kinetics of uptake of ATP, ADP, and AMP also each appeared to be a saturable carrier-mediated transport. The kinetic properties of the uptake of ATP were compared with those of the ATP hydrolysis and the uptake of adenosine. It was concluded that the adenosine moiety of ATP was taken up via a specific adenosine transport system after dephosphorylation by the 5'-nucleotidase.  相似文献   

11.
Measurements of ATP in mammalian cells   总被引:8,自引:0,他引:8  
Levels of phosphorylated adenosine nucleotides, including the universal energy carrier adenosine 5(')-triphosphate (ATP) and its metabolites adenosine 5(')-diphosphate (ADP) and adenosine 5(')-monophosphate (AMP), define the energy state in living cells and are dependent mainly on mitochondrial function. In this article, we describe a method based on the luciferase-luciferin system used to measure mitochondrial ATP synthesis continuously in permeabilized mammalian cells and mitochondria isolated from animal tissues. We also describe a technique that uses the expression of recombinant targeted luciferase to report ATP content in different cell compartments. Finally, we describe an HPLC-based method for accurate measurement of ATP, ADP, and AMP in cultured cells and animal tissues.  相似文献   

12.
The receptors mediating inhibition of the rat ileum by adenosine and adenine nucleotides were studied. ATP and ADP were more potent than AMP or adeonsine. Theophylline antagonized the effects of adenosine and AMP but not those of ATP or ADP. Preparations desensitized to ATP or ADP were still inhibited by adenosine and vice versa. The nonadrenergic, noncholinergic inhibition produced by field stimulation or nicotine was not attenuated by the presence of theophylline or desensitization to ATP. These data indicate that more than one adenine derivative receptor is present in rat ileum and that ATP and adenosine are unlikely candidates for the unknown transmitter.  相似文献   

13.
The endogenous level of cyclic AMP in incubated synaptosomes from cerebral cortex of guinea pigs was investigated after the addition of various agents to the incubation medium. It appeared that the synaptosomal suspension already contained exogenous adenosine. Preincubation with theophylline or with adenosine deaminase (ADase) decreased both the exogenous level of adenosine and the intrasynaptosomal level of cyclic AMP. The level of cyclic AMP was reincreased by the addition of adenosine agonists, especially 2-chloroadenosine. This increase was antagonized by deoxyadenosine and was not inhibited by dipyridamole. These results suggest that the adenosine derivatives in the synaptic cleft regulate the level of cyclic AMP in nerve terminals through adenosine receptor on the presynaptic membrane. ADP, ATP, dopamine, and histamine also stimulate the formation of cyclic AMP in the ADase-treated synaptosomes.  相似文献   

14.
To investigate the intracellular concentrations of adenosine phosphates in Escherichia coli, especially during bioreactor cultivations, a method that enables reproducible determination of adenosine phosphates in culture solutions containing at least 0.25 g dry cell weight/L has been developed. The detection limits of AMP, ADP, and ATP were found to be as low as 1 pmol. The method involves fast sampling, instantaneous inactivation of cell metabolism, extraction of nucleotides, and quantitative analysis by ion-pair reversed-phase HPLC.  相似文献   

15.
The ATPase activity of Catharanthus roseus tonoplasts was examined using HPLC separation and quantification of adenine nucleotides. ATP seemed to be degraded into ADP and AMP by tonoplast vesicles. When ADP was the initial substrate, the appearance of AMP and concomitant ATP synthesis were observed; these reactions were inhibited by Ap5A. The apparent degradation of ATP into AMP was also inhibited by Ap5A. These results indicated that AMP arose from an ATP:AMP phosphotransferase activity and excluded the possibility of the hydrolysis of ADP into AMP by the tonoplast ATPase. AMP was degraded by the microsomal fraction from protoplasts or by the cytosol while the tonoplast vesicles did not hydrolyze it. This observation was used to assess the purity of tonoplasts.  相似文献   

16.
Nucleotides within the airway surface liquid (ASL) regulate airway epithelial ion transport rates by Ca(2+) -and protein kinase C-dependent mechanisms via activation of specific P2Y receptors. Extracellular adenine nucleotides also serve as precursors for adenosine, which promotes cyclic AMP-mediated activation of the cystic fibrosis transmembrane regulator chloride channel via A(2b) adenosine receptors. A biological role for extracellular ATP in ASL volume homeostasis has been suggested by the demonstration of regulated ATP release from airway epithelia. However, nucleotide hydrolysis at the airway surface makes it difficult to assess the magnitude of ATP release and the relative abundance of adenyl purines and, hence, to define their biological functions. We have combined ASL microsampling and high performance liquid chromatography analysis of fluorescent 1,N(6)-ethenoadenine derivatives to measure adenyl purines in ASL. We found that adenosine, AMP, and ADP accumulated in high concentrations relative to ATP within the ASL covering polarized primary human normal or cystic fibrosis airway epithelial cells. By using immortalized epithelial cell monolndogenayers that eously express a luminal A(2b) adenosine receptor, we found that basal as well asforskolin-promoted cyclic AMP production was reduced by exogenous adenosine deaminase, suggesting that A(2b) receptors sense endogenous adenosine within the ASL. The physiological role of adenosine was further established by illustrating that adenosine removal or inhibition of adenosine receptors in primary cultures impaired ASL volume regulation. Our data reveal a complex pattern of nucleotides/nucleosides in ASL under resting conditions and suggest that adenosine may play a key role in regulating ASL volume homeostasis.  相似文献   

17.
Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca2+ transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.  相似文献   

18.
Vibrio parahaemolyticus could grow with AMP, ADP or ATP as the sole source of carbon. In the presence of Cl-, a membrane-bound Cl(-)-dependent 5'-nucleotidase seemed to hydrolyze the nucleotides extracellularly, and then the cells took up the resulting adenosine. In the absence of Cl-, although no significant dephosphorylation of the nucleotides occurred, the cells could still grow with AMP, but not with ADP or ATP. Moreover, in the presence of Cl-, Zn2+ inhibited the 5'-nucleotidase, and inhibited growth of the cells with ADP or ATP, but not with AMP, as the carbon source. V. parahaemolyticus was unable to grow with adenine or ribose 5-phosphate. These results suggested that the cells might have an AMP transport system. In fact, Na+ uptake was observed on addition of AMP to a cell suspension in the absence of Cl-, indicating Na+-AMP cotransport.  相似文献   

19.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

20.
Nucleotide activation of P2 receptors is important in autocrine and paracrine regulation in many tissues. In the epidermis, nucleotides are involved in proliferation, differentiation, and apoptosis. In this study, we have used a combination of luciferin-luciferase luminometry, pharmacological inhibitors, and confocal microscopy to demonstrate that HaCaT keratinocytes release ATP into the culture medium, and that there are three mechanisms for nucleotide interconversion, resulting in ATP generation at the cell surface. Addition of ADP, GTP, or UTP to culture medium elevated the ATP concentration. ADP to ATP conversion was inhibited by diadenosine pentaphosphate, oligomycin, and UDP, suggesting the involvement of cell surface adenylate kinase, F(1)F(0) ATP synthase, and nucleoside diphosphokinase (NDPK), respectively, which was supported by immunohistochemistry. Simultaneous addition of ADP and GTP elevated ATP above that for each nucleotide alone indicating that GTP acts as a phosphate donor. However, the activity of NDPK, F(1)F(0) ATP synthase or the forward reaction of adenylate kinase could not fully account for the culture medium ATP content. We postulate that this discrepancy is due to the reverse reaction of adenylate kinase utilizing AMP. In normal human skin, F(1)F(0) ATP synthase and NDPK were differentially localized, with mitochondrial expression in the basal layer, and cell surface expression in the differentiated layers. We and others have previously demonstrated that keratinocytes express multiple P2 receptors. In this study we now identify the potential sources of extracellular ATP required to activate these receptors and provide better understanding of the role of nucleotides in normal epidermal homeostasis and wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号