首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate control of macromolecule transport between nucleus and cytoplasm underlines several essential biological processes, including gene expression. According to the canonical model, nuclear import of soluble proteins is based on nuclear localization signals and transport factors. We challenge this view by showing that nuclear localization of the actin‐dependent motor protein Myosin‐1C (Myo1C) resembles the diffusion–retention mechanism utilized by inner nuclear membrane proteins. We show that Myo1C constantly shuttles in and out of the nucleus and that its nuclear localization does not require soluble factors, but is dependent on phosphoinositide binding. Nuclear import of Myo1C is preceded by its interaction with the endoplasmic reticulum, and phosphoinositide binding is specifically required for nuclear import, but not nuclear retention, of Myo1C. Our results therefore demonstrate, for the first time, that membrane association and binding to nuclear partners is sufficient to drive nuclear localization of also soluble proteins, opening new perspectives to evolution of cellular protein sorting mechanisms.  相似文献   

2.
Nuclear transport carriers interact with proteins of the nuclear pore complex (NPC) to transport their cargo across the nuclear envelope. One such carrier is nuclear transport factor 2 (NTF2), whose import cargo is the small GTPase Ran. A domain highly homologous to the small NTF2 protein (14kDa) is also found in a number of additional proteins, which together make up the NTF2 domain containing superfamily of proteins. Using structural, computational and biochemical analysis we have identified a functional site that is present throughout this superfamily, and our results indicate that this site functions as an NPC binding site in NTF2. Previously we showed that a D23A mutant of NTF2 exhibits increased affinity for the NPC. The mechanism of this mutation, however, was unknown as this region of NTF2 had not been implicated in binding to NPC proteins. Here we show that the D23A mutation in NTF2 does not result in gross structural changes affecting other known NPC binding sites. Instead, the D23 residue is located in an evolutionarily important region in the NTF2 domain containing superfamily, that in NTF2, is involved in binding to the NPC.  相似文献   

3.
Nuclear pore complexes are constitutive structures of the nuclear envelope in eukaryotic cells and represent the sites where transport of molecules between nucleus and cytoplasm takes place. However, pore complexes of similar structure, but with largely unknown functional properties, are long known to occur also in certain cytoplasmic cisternae that have been termed annulate lamellae (AL). To analyze the capability of the AL pore complex to interact with the soluble mediators of nuclear protein import and their karyophilic protein substrates, we have performed a microinjection study in stage VI oocytes ofXenopus laevis.In these cells AL are especially abundant and can easily be identified by light and electron microscopy. Following injection into the cytoplasm, fluorochrome-labeled mediators of two different nuclear import pathways, importin β and transportin, not only associate with the nuclear envelope but also with AL. Likewise, nuclear localization signals (NLS) of the basic and M9 type, but not nuclear export signals, confer targeting and transient binding of fluorochrome-labeled proteins to cytoplasmic AL. Mutation or deletion of the NLS signals prevents these interactions. Furthermore, binding to AL is abolished by dominant negative inhibitors of nuclear protein import. Microinjections of gold-coupled NLS-bearing proteins reveal specific gold decoration at distinct sites within the AL pore complex. These include such at the peripheral pore complex-attached fibrils and at the central “transporter” and closely resemble those of “transport intermediates” found in electron microscopic studies of the nuclear pore complex (NPC). These data demonstrate that AL can represent distinct sites within the cytoplasm of transient accumulation of nuclear proteins and that the AL pore complex shares functional binding properties with the NPC.  相似文献   

4.
Transport through the nuclear pore complex (NPC), a keystone of the eukaryotic building plan, is known to involve a large channel and an abundance of phenylalanine–glycine (FG) protein domains serving as binding sites for soluble nuclear transport receptors and their cargo complexes. However, the conformation of the FG domains in vivo, their arrangement in relation to the transport channel and their function(s) in transport are still vividly debated. Here, we revisit a number of representative transport models—specifically Brownian affinity gating, selective phase gating, reversible FG domain collapse, and reduction of dimensionality (ROD)—in the light of new data obtained by optical single transporter recording, optical superresolution microscopy, artificial nanopores, and many other techniques. The analysis suggests that a properly adapted, simplified version of the ROD model accounts well for the available data. This has implications for nucleocytoplasmic transport in general.  相似文献   

5.
The members of the RGK small GTP-binding protein family, Kir/Gem, Rad, Rem and Rem2, are multifunctional proteins that regulate voltage-gated calcium channel activity and cell shape remodeling. Calmodulin (CaM) or CaM 14-3-3 are regulators of RGK functions and their association defines the subcellular localization of RGK proteins. Abolition of CaM association results in the accumulation of RGK proteins in the nucleus, whereas 14-3-3 binding maintains them in the cytoplasm. Kir/Gem possesses nuclear localization signals (NLS) that mediate nuclear accumulation through an importin alpha5-dependent pathway (see Mahalakshmi RN, Nagashima K, Ng MY, Inagaki N, Hunziker W, Béguin P. Nuclear transport of Kir/Gem requires specific signals and importin alpha5 and is regulated by Calmodulin and predicted service phosphorylations. Traffic 2007; doi: 10.1111/j.1600-0854.2007.00598.x). Because the extent of nuclear localization depends on the RGK protein and the cell type, the mechanism and regulation of nuclear transport may differ. Here, we extend our analysis to the other RGK members and show that Rem also binds importin alpha5, whereas Rad associates with importins alpha3, alpha5 and beta through three conserved NLS. Predicted phosphorylation of a serine residue within the bipartite NLS affects, as observed for Kir/Gem, nuclear accumulation of Rem, but not that of Rad or Rem2. We also identify an additional regulatory phosphorylation for all RGK proteins that prevents binding of 14-3-3 and thereby interferes with their cytosolic relocalization by 14-3-3. Functionally, nuclear localization of RGK proteins contributes to the suppression of RGK-mediated cell shape remodeling. Importantly, we show that endogenous RGK proteins are localized predominantly in the nucleus of individual cells of the brain cortex 'in situ' as well as in primary hippocampal cells, indicating that transport between the nucleus and their site of action in the cytoplasm (i.e., cytoskeleton, endoplasmic reticulum or plasma membrane) is of physiological relevance for the regulation of RGK protein function.  相似文献   

6.
Nuclear division, nuclear distribution and cytokinesis are fundamental processes of all eukaryotic organisms, and filamentous fungi, specificallyAspergillus nidulans andNeurospora crassa, have provided sophisticated genetic systems for identification of the genes required for these processes. Mutational analyses have led to identification of novel proteins that have subsequently been found to be conserved components required for nuclear-specific functions. Formation of the mitotic spindle inA. nidulans has been shown to be dependent onγ-tubulin, a central element of all microtubule organizing centres, and two kinesin-related proteins. Analysis ofA. nidulans mitotic mutants has led to identification of two important cell-cycle regulators, NIMA and BIME. The NIMA kinase is required for entry into mitosis, and BIME has recently been identified as a subunit of an anaphase-promoting complex that targets cyclins for proteolysis. The microtubule-associated motor protein cytoplasmic dynein has been discovered in bothA. nidulans andN. crassa, and it has been proposed that it provides motive force for the distribution of nuclei within hyphae. Future studies of nucleus-specific processes in filamentous fungi are likely not only to identify additional novel structural and regulatory proteins, but also lead to an understanding of how the processes of nuclear division, nuclear distribution and septation are altered to meet the developmental needs of the organism.  相似文献   

7.
8.
Histones are the major structural proteins in eukaryotic chromosomes. This group of small very basic proteins consists of the H1 linker histones and the core histones H2A, H2B, H3 and H4. Despite their small size, the nuclear import of histones occurs by an active transport mechanism and not simply by diffusion. Histones contain several nuclear localisation signals (NLS) that can be subdivided into two different types of signal structures. We have previously shown that H1 histones are transported by a heterodimeric import receptor complex consisting of importin beta and importin 7, and we now describe the receptors required for the import of the core histones. Competition experiments using the in vitro transport assay indicate that the import pathway of the core histones differs from that of the linker histones and of nuclear proteins with classical NLS. In vitro binding assays show that each of the import receptors importin beta, importin 5, importin 7 and transportin, has the capacity to bind to any of the four core histones. Reconstitution experiments with recombinant factors indicate that each of these factors can independently serve as an import receptor for each of the core histones.  相似文献   

9.
Kir/Gem, together with Rad, Rem and Rem2, is a member of the RGK small GTP-binding protein family. These multifunctional proteins regulate voltage-gated calcium channel (VGCC) activity and cell-shape remodeling. Calmodulin and 14-3-3 binding modulate the functions of RGK proteins. Intriguingly, abolishing the binding of calmodulin or calmodulin and 14-3-3 results in nuclear accumulation of RGK proteins. Under certain conditions, the Ca(v)beta3-subunit of VGCCs can be translocated into the nucleus along with the RGK proteins, resulting in channel inactivation. The mechanism by which nuclear localization of RGK proteins is accomplished and regulated, however, is unknown. Here, we identify specific nuclear localization signals (NLS) in Kir/Gem that are both required and sufficient for nuclear transport. Importin alpha5 binds to Kir/Gem, and its depletion using RNA interference impairs nuclear translocation of this RGK protein. Calmodulin and predicted phosphorylations on serine residues within or in the vicinity of a C-terminal bipartite NLS regulate nuclear translocation by interfering with the association between importinalpha5 and Kir/Gem. These predicted phosphorylations, however, do not affect Kir/Gem-mediated calcium channel downregulation but rather, as shown in the accompanying paper (Mahalakshmi RN, Ng MY, Guo K, Qi Z, Hunziker W, Béguin P. Nuclear localization of endogenous RGK proteins and modulation of cell shape remodeling by regulated nuclear transport. Traffic 2007; doi:10.1111/j.1600-0854.2007.00599.x), interfere with cell-shape remodeling.  相似文献   

10.
Tumor suppressor proteins control the proliferation and survival of normal cells; consequently, their inactivation by gene mutations can initiate or drive cancer progression. Most tumor suppressors have been identified by genetic screening, and in many cases their function and regulation are poorly understood. Ten such proteins were recently shown to contain nuclear transport signals that facilitate their "shuttling" between the nucleus and cytoplasm. This type of dynamic intracellular movement not only regulates protein localization, but also often impacts on function. Here, we review the pathways by which tumor suppressors such as APC, p53, VHL, and BRCA1 cross the nuclear envelope and the impact of regulated nuclear import/export on protein function.  相似文献   

11.
Nucleocytoplasmic trafficking is an essential and responsive cellular mechanism that directly affects cell growth and proliferation, and its potential to address metabolic challenge is incompletely defined. Ceramide is an antiproliferative sphingolipid found within vascular smooth muscle cells in atherosclerotic plaques, but its mechanism of action remains unclear. The hypothesis that ceramide inhibits cell growth through nuclear transport regulation was tested. In smooth muscle cells, exogenously supplemented ceramide inhibited classical nuclear protein import that involved the activation of cytosolic p38 mitogen-activated protein kinase (MAPK). After application of SB 202190, a specific and potent pharmacological antagonist of p38 MAPK, sphingolipid impingement on nuclear transport was corrected. Distribution pattern assessments of two essential nuclear transport proteins, importin-alpha and Cellular Apoptosis Susceptibility, revealed ceramide-mediated relocalization that was reversed upon the addition of SB 202190. Furthermore, cell counts, nuclear cyclin A, and proliferating cell nuclear antigen expression, markers of cellular proliferation, were diminished after ceramide treatment and effectively rescued by the addition of inhibitor. Together, these data demonstrate, for the first time, the sphingolipid regulation of nuclear import that defines and expands the adaptive capacity of the nucleocytoplasmic transport machinery.  相似文献   

12.
13.
The nucleus is a spherical dual‐membrane bound organelle that encapsulates genomic DNA. In eukaryotes, messenger RNAs (mRNA) are transcribed in the nucleus and transported through nuclear pores into the cytoplasm for translation into protein. In certain cell types and pathological conditions, nuclei harbor tubular invaginations of the nuclear envelope known as the “nucleoplasmic reticulum.” Nucleoplasmic reticulum expansion has recently been established as a mediator of neurodegeneration in tauopathies, including Alzheimer's disease. While the presence of pore‐lined, cytoplasm‐filled, nuclear envelope invaginations has been proposed to facilitate the rapid export of RNAs from the nucleus to the cytoplasm, the functional significance of nuclear envelope invaginations in regard to RNA export in any disorder is currently unknown . Here, we report that polyadenylated RNAs accumulate within and adjacent to tau‐induced nuclear envelope invaginations in a Drosophila model of tauopathy. Genetic or pharmacologic inhibition of RNA export machinery reduces accumulation of polyadenylated RNA within and adjacent to nuclear envelope invaginations and reduces tau‐induced neuronal death. These data are the first to point toward a possible role for RNA export through nuclear envelope invaginations in the pathogenesis of a neurodegenerative disorder and suggest that nucleocytoplasmic transport machinery may serve as a possible novel class of therapeutic targets for the treatment of tauopathies.  相似文献   

14.
Protein export from the nucleus   总被引:2,自引:1,他引:1  
  相似文献   

15.
16.
Trafficking of proteins and RNAs is essential for cellular function and homeostasis. While it has long been appreciated that proteins and RNAs move within cells, only recently has it become possible to visualize trafficking events in vivo. Analysis of protein and RNA motion within the cell nucleus have been particularly intriguing as they have revealed an unanticipated degree of dynamics within the organelle. These methods have revealed that the intranuclear trafficking occurs largely by energy-independent mechanisms and is driven by diffusion. RNA molecules and non-DNA binding proteins undergo constrained diffusion, largely limited by the spatial constraint imposed by chromatin, and chromatin binding proteins move by a stop-and-go mechanism where their free diffusion is interrupted by random association with the chromatin fiber. The ability and mode of motion of proteins and RNAs has implications for how they find nuclear targets on chromatin and in nuclear subcompartments and how macromolecular complexes are assembled in vivo. Most importantly, the dynamic nature of proteins and RNAs is emerging as a means to control physiological cellular responses and pathways.  相似文献   

17.
Nuclear import of the simian virus 40 large tumor antigen (T-ag) is dependent on its nuclear localization signal (NLS) within amino acids 126–132 that is recognized by the importin α/β1 heterodimer, as well as a protein kinase CK2 site at serine 112 upstream of the NLS, which enhances the interaction ∼50-fold. Here we show for the first time that T-ag nuclear import is negatively regulated by N-terminal sequences (amino acids 102–110), which represent the binding site (BS) for the retinoblastoma (Rb) tumor suppressor protein (p110Rb). Quantitative confocal laser scanning microscopic analysis of the transport properties of T-ag constructs with or without Rb binding site mutations in living transfected cells or in a reconstituted nuclear transport system indicates that the presence of the RbBS significantly reduces nuclear accumulation of T-ag. A number of approaches, including the analysis of T-ag nuclear import in an isogenic cell pair with and without functional p110Rb implicate p110Rb binding as being responsible for the reduced nuclear accumulation, with the Ser106 phosphorylation site within the RbBS appearing to enhance the inhibitory effect. Immunoprecipitation experiments confirmed association of T-ag and p110Rb and dependence thereof on negative charge at Ser106. The involvement of p110Rb in modulating T-ag nuclear transport has implications for the regulation of nuclear import of other proteins from viruses of medical significance that interact with p110Rb, and how this may relate to transformation.  相似文献   

18.
Summary The transport of solutes by bacteria has been studied for about thirty years. Early experiments on amino acid entry and galactoside accumulation provided concrete evidence that bacteria possessed specific transport systems and that these were subject to regulation. Since then a large number of transport systems have been discovered and studied extensively. Many of these use entirely different strategies for capturing or accumulating substrates. This diversity reflects variation in the availability of nutrients and ions in the different environments tolerated and inhabited by microorganisms. Examination of a few bacterial transport systems provides an opportunity to gain insight into a wide range of topics in the area of membrane transport. These include: the identification of carrier proteins and their arrangement in the membrane, the regulation of transport protein synthesis by environmental factors, and the localization of transport proteins to their extracytoplasmic destinations.It has been possible to construct a number of bacterial strains in which the gene (lacZ) which codes for the cytoplasmic enzyme -galactosidase is fused to genes which code for transport proteins. The following article is intended to illustrate how these gene fusions have been used to study the regulation and structure of transport proteins inEscherichia coli.  相似文献   

19.
真核细胞核膜上的核孔复合体 (nuclear pore complex, NPC) 是细胞核内外进行物质交换的主要通道, 分子量较小的化合物可自由通过NPC或采取被动扩散的方式进入细胞核, 而分子量为50 kD以上的蛋白质则只能通过主动转运进入细胞核. 以这种方式进入细胞核的 蛋白质必须在其氨基酸序列上拥有特殊的核定位信号(nuclear localization signal, NLS)以被相应的核转运蛋白(karyopherins) 识别. 核定位信号具有多样性, 包括经典核定位信号(classical NLS,cNLS), 内输蛋白β2识别的核定位信号(又称PY模体-NLS)和其它类型的NLS. 每一类NLS具有相似的特征, 但并不具有完全保守的氨基酸组成. 不同的NLS, 往往对应着各不相同的核输入机制. 而对同一蛋白质来说, 也可能同时拥有几个功能性的NLS. 研究核定位信号一方面可以帮助揭示新的大分子物质核转运机制, 另一方面也有助于发现一些蛋白质的新功能. 本文对常见NLS的分类进行了总结, 并介绍了两种常用的NLS预测软件及鉴定NLS的一般策略.  相似文献   

20.
Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号