首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adenovirus-mediated BMP2 expression in human bone marrow stromal cells   总被引:13,自引:0,他引:13  
Recombinant adenoviral vectors have been shown to be potential new tools for a variety of musculoskeletal defects. Much emphasis in the field of orthopedic research has been placed on developing systems for the production of bone. This study aims to determine the necessary conditions for sustained production of high levels of active bone morphogenetic protein 2 (BMP2) using a recombinant adenovirus type 5 (Ad5BMP2) capable of eliciting BMP2 synthesis upon infection and to evaluate the consequences for osteoprogenitor cells. The results indicate that high levels (144 ng/ml) of BMP2 can be produced in non-osteoprogenitor cells (A549 cell line) by this method and the resultant protein appears to be three times more biologically active than the recombinant protein. Surprisingly, similar levels of BMP2 expression could not be achieved after transduction with Ad5BMP2 of either human bone marrow stromal cells or the mouse bone marrow stromal cell line W20-17. However, human bone marrow stromal cells cultured with 1 microM dexamethasone for four days, or further stimulated to become osteoblast-like cells with 50 microg/ml ascorbic acid, produced high levels of BMP2 upon Ad5BMP2 infection as compared to the undifferentiated cells. The increased production of BMP2 in adenovirus transduced cells following exposure to 1 microM dexamethasone was reduced if the cells were not given 50 microg/ml ascorbic acid. When bone marrow stromal cells were allowed to become confluent in culture prior to differentiation, BMP2 production in response to Ad5BMP2 infection was lost entirely. Furthermore, the increase in BMP2 synthesis seen during differentiation was greatly decreased when Ad5BMP2 was administered prior to dexamethasone treatment. In short, the efficiency of adenovirus mediated expression of BMP2 in bone marrow stromal cells appears to be dependent on the differentiation state of these cells.  相似文献   

2.
Bone marrow adipose tissue (BMAT) is different from fat found elsewhere in the body, and only recently have some of its functions been investigated. BMAT may regulate bone marrow stem cell niche and plays a role in energy storage and thermogenesis. BMAT may be involved also in obesity and osteoporosis onset. Given the paramount functions of BMAT, we decided to better clarify the human bone marrow adipogenesis by analyzing the role of the retinoblastoma gene family, which are key players in cell cycle regulation.

Our data provide evidence that the inactivation of RB1 or RB2/P130 in uncommitted bone marrow stromal cells (BMSC) facilitates the first steps of adipogenesis. In cultures with silenced RB1 or RB2/P130, we observed an increase of clones with adipogenic potential and a higher percentage of cells accumulating lipid droplets.

Nevertheless, the absence of RB1 or RB2/P130 impaired the terminal adipocyte differentiation and gave rise to dysregulated adipose cells, with alteration in lipid uptake and release. For the first time, we evidenced that RB2/P130 plays a role in bone marrow adipogenesis.

Our data suggest that while the inactivation of retinoblastoma proteins may delay the onset of last cell division and allow more BMSC to be committed to adipocyte, it did not allow a permanent cell cycle exit, which is a prerequisite for adipocyte terminal maturation.  相似文献   


3.
Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411–426, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
The osteogenesis of bone marrow stromal cells (BMSCs) is of paramount importance for the repair of large‐size bone defects, which may be compromised by the dietary‐accumulated all‐trans retinoic acid (ATRA). We have shown that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) could induce bone regeneration in a significantly higher dose‐efficiency in comparison with homodimeric BMPs. In this study, we evaluated the effects of ATRA and BMP2/7 on the proliferation, differentiation, mineralization and osteogenic genes. ATRA and BMP2/7 exhibited both antagonistic and synergistic effects on the osteogenesis of BMSCs. ATRA significantly inhibited proliferation and expression of osteocalcin but enhanced the activity of alkaline phosphatase of BMSCs. On day 21, 50 ng/mL BMP2/7 could antagonize the inhibitive effects of ATRA and significantly enhance osteogenesis of BMSCs. These findings suggested a promising application potential of heterodimeric BMP2/7 in clinic to promote bone regeneration for the cases with dietary accumulated ATRA.  相似文献   

5.
To clarify the mechanism of the stimulatory effect of statins on bone formation, we investigated the effect of simvastatin, a widely used statin, on osteoblastic and adipocytic differentiation in primary cultured mouse bone marrow stromal cells (BMSCs). Simvastatin treatment enhanced the expression level of mRNA for osteocalcin and protein for osteocalcin and osteopontin, and increased alkaline phosphatase activity significantly (p<0.05). After BMSCs were exposed to an adipocyte differentiation agonist, Oil Red O staining, fluorescence activated cell sorting, and decreased expression level of lipoprotein lipase mRNA showed that treatment with simvastatin significantly inhibits adipocytic differentiation compared to controls that did not receive simvastatin (p<0.05). Lastly, we found that simvastatin induces high expression of BMP(2) in BMSCs. These observations suggested that simvastatin acts on BMSCs to enhance osteoblastic differentiation and inhibits adipocytic differentiation; this effect is at least partially mediated by inducing BMP(2) expression in BMSCs.  相似文献   

6.
Osteoblasts, the chief bone-forming cells, are differentiated from mesenchymal stromal/stem cells. Disruption of this differentiation process can cause osteoporosis, a bone disease characterized by low bone mass and deteriorated bone structure. Cholesterol has been implicated in pathogenesis of osteoporosis, and was recently identified as an endogenous activator of Hedgehog (Hh) signaling. However, its pathological and physiological roles in osteoblast differentiation are still poorly understood. Moreover, it is unclear whether these potential roles played by cholesterol are related to its capability to modulate Hh pathway. In this study, we investigated the role of exogenous versus endogenous cholesterol in osteogenesis and Hh pathway activation using ST2 cells, a bone marrow stromal cell line. We found that exogenous cholesterol significantly inhibited alkaline phosphatase (ALP) activity and messenger RNA expression of osteoblast markers genes (Alpl, Sp7, and Ibsp) while modestly activating expression of Gli1 (a readout of Hh signaling) under both basal osteogenic culture condition and Wnt3a treatment. Similarly, exogenous cholesterol suppressed osteogenic response of ST2 cells to sonic Hh (Shh) or purmorphamine (Purmo) treatment, which, however, was accompanied by diminished induction of Gli1, indicating the involvement of a Hh-dependent mechanism. Interestingly, depletion of endogenous cholesterol also reduced Shh-induced ALP activity and Gli1 expression. Likewise, cholesterol depletion inhibited osteogenic response to Purmo, although it did not affect Gli1 induction. Taken together, our findings have demonstrated that cholesterol plays a dual role in osteoblast differentiation likely through both Hh-dependent and -independent mechanisms.  相似文献   

7.
8.
Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage-specific, and sustained exposure has been shown to down-regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation.  相似文献   

9.
Activated T cells secrete multiple osteoclastogenic cytokines which play a major role in the bone destruction associated with rheumatoid arthritis. While the role of T cells in osteoclastogenesis has received much attention recently, the effect of T cells on osteoblast formation and activity is poorly defined. In this study, we investigated the hypothesis that in chronic inflammation activated T cells contribute to enhanced bone turnover by promoting osteoblastic differentiation. We show that T cells produce soluble factors that induce alkaline phosphatase activity in bone marrow stromal cells and elevated expression of mRNA for Runx2 and osteocalcin. This data indicate that T cell derived factors have the capacity to stimulate the differentiation of bone marrow stromal cells into the osteoblast phenotype. RANKL mRNA was undetectable under any conditions in highly purified bone marrow stromal cells. In contrast, RANKL was constitutively expressed in primary osteoblasts and only moderately up-regulated by activated T cell conditioned medium. Interestingly, both bone marrow stromal cells and osteoblasts expressed mRNA for RANK, which was strongly up-regulated in both cell types by activated T cell conditioned medium. Although, mRNA for the RANKL decoy receptor, osteoprotegerin, was also up-regulated by activated T cell conditioned medium, it's inhibitory effects may be mitigated by a simultaneous rise in the osteoprotegerin competitor TNF-related apoptosis-inducing ligand. Based on our data we propose that during chronic inflammation, T cells regulate bone loss by a dual mechanism involving both direct stimulation of osteoclastogenesis, by production of osteoclastogenic cytokines, and indirectly by induction of osteoblast differentiation and up-regulation of bone turnover via coupling.  相似文献   

10.
It is well established that bone metastases comprise bone; however, the exact factors/mechanisms involved remain unknown. We hypothesized that tumor cells secreted factors capable of altering normal bone metabolism. The aims of the present study were to (1) determine the effects of secretory products isolated from HT-39 cells, a human breast cancer cell line, on osteoprogenitor cell (MC3T3-E1 cells) behavior, and (2) identify tumor-derived factor(s) that alters osteoblast activities. Conditioned media (CM) from HT-39 cells were collected following a 24-h serum-free culture. The ability of CM to alter gene expression in MC3T3-E1 cells was determined by Northern analysis. CM effects on cell proliferation and mineralization ability were determined using a Coulter counter and von Kossa stain, respectively. MC3T3-E1 cells were treated with CM plus noggin, a factor known to block bone morphogenic proteins (BMPs), to determine whether BMPs, shown to be present in CM, were linked with CM effects on MC3T3-E1 cell activity. In addition, inhibitors of MAP kinase kinase (MEK), protein kinase C (PKC), and protein kinase A were used to identify the intracellular signaling pathway(s) by which the active factors in CM regulated osteoblast behavior. CM treatment significantly enhanced BSP mRNA (2.5-fold over control), but had no effect on cell proliferation. Mineralization assay showed that CM enhanced mineral nodule formation compared to controls. Noggin inhibited CM-induced upregulation of BSP mRNA, suggesting that BMPs were responsible for upregulating BSP gene expression in MC3T3-E1 cells. The PKC inhibitor blocked CM-mediated upregulation of BSP, suggesting involvement of the PKC pathway in regulating BSP expression. BMPs secreted by HT-39 cells may be responsible for enhancing BSP expression in MC3T3-E1 cells. Continued studies targeted at determining the role of BMPs in regulating bone metabolism are important for understanding the pathogenesis of bone diseases.  相似文献   

11.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The osteoporosis that occurs with aging is associated with reduced number and activity of osteoblastic cells. Aging, menopause, and osteoporosis are correlated with increased oxidative stress and reduced antioxidant defense mechanisms. We previously demonstrated that oxidative stress induced by a variety of compounds such as xanthine/xanthine oxidase (XXO) and minimally oxidized LDL (MM-LDL) inhibit the osteogenic differentiation of osteoprogenitor cells. Oxysterols are a family of products derived from cholesterol oxidation that have important biological activities. Recently, we reported that a specific oxysterol combination consisting of 22(S)- or 22(R)-hydroxycholesterol and 20(S)-hydroxycholesterol has potent osteogenic properties in vitro when applied to osteoprogenitor cells including M2-10B4 (M2) marrow stromal cells. We now demonstrate that this osteogenic combination of oxysterols prevents the adverse effects of oxidative stress on differentiation of M2 cells into mature osteoblastic cells. XXO and MM-LDL inhibited the osteogenic differentiation of M2 cells, demonstrated by the inhibition of markers of osteogenic differentiation: alkaline phosphatase activity, osteocalcin expression and mineralization. Treatment of M2 cells with osteogenic oxysterol combination 22(S)- and 20(S)-hydroxycholesterol both blocked and reversed the inhibition of osteogenic differentiation produced by XXO and MM-LDL in these cells. The protective effect of the oxysterols against oxidative stress was dependent on cyclooxygenase 1 and was associated with the osteogenic property of the oxysterols. These findings further demonstrate the ability of the osteogenic oxysterols to positively regulate osteogenic differentiation of cells, and suggests that the use of these compounds may be a novel strategy to prevent the adverse effects of oxidative stress on osteogenesis.  相似文献   

13.
Transplanting stem cells differentiated towards a cardiac lineage can regenerate cardiac muscle tissues to treat myocardial infarction. In this study, we tested the hypothesis that transforming growth factor‐β1 (TGF‐β1) induces cardiomyogenic differentiation of adipose‐ derived stromal cells (ADSCs) in vitro. Rat ADSCs were cultured with TGF‐β1 (10 ng ml?1) for 2 weeks in vitro. ADSCs cultured without TGF‐β1 served as a control. The mRNA expression of cardiac‐specific gene was induced by TGF‐β1, while the control culture did not show cardiac‐specific gene expression. Immunocytochemical analyses showed that a small fraction of ADSCs cultured with TGF‐β1 for 2 weeks stained positively for cardiac myosin heavy chain (MHC) and α‐sarcomeric actin. Flow cytometric analyses showed that the proportion of cells expressing cardiac MHC increased with TGF‐β1. However, no mesenchymal differentiation (e.g., osteogenic and adipogenic differentiation) was detected other than cardiomyogenic differentiation. These results showed that TGF‐β1 induce ADSC cardiomyogenic differentiation in vitro, which could be useful for myocardial infarction stem cell therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
During the last decade, increasing evidence suggested that bone marrow stromal cells (MSCs) have the potential to differentiate into neural lineages. Many studies have reported that MSCs showed morphological changes and expressed a limited number of neural proteins under experimental conditions. However, no proteomic studies on MSCs differentiated into Schwann cell-like cells have been reported. In this study, we isolated MSCs from adult Sprague-Dawley rat femur and tibia bone marrows and induced the cells in vitro under specific conditions. By using two-dimensional gel electrophoresis (2-DE), we compared the protein profiles of MSCs before and after induced differentiation. We obtained 792 protein spots in the protein profile by 2-DE, and found that 74 spots changed significantly before and after the differentiation using PDQuest software, with 43 up-regulated and 31 down-regulated. We analyzed these 74 spots by a matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and by database searching, and found that they could be grouped into various classes, including cytoskeleton and structure proteins, growth factors, metabolic proteins, chaperone proteins, receptor proteins, cell cycle proteins, calcium binding proteins, and other proteins. These proteins also include neural and glial proteins, such as BDNF, CNTF and GFAP. The results may provide valuable proteomic information about the differentiation of MSCs into Schwann cell-like cells. Supported by National High-Tech Research and Development Program of China (Grant No. 2006AA02A128) and National Natural Science Foundation of China (Grant No. 30670667).  相似文献   

15.
Liu ML  Shi XQ  Zhou WH  Liu HW  Li D  Jia MC 《生理学报》2006,58(4):370-376
为了探讨人骨髓基质细胞(bone marrow stromal cells,BMSCs)向成骨细胞分化过程中差异表达的基因,本实验采用体外培养人BMSCs,诱导向成骨细胞分化。分别选取培养12和21d的细胞作为驱动方(driver)和实验方(tester),进行抑制消减杂交,构建cDNA消减文库,将挑选出的阳性克隆与GenBank人基因库中己公布的核酸序列进行同源性比较分析。结果表明,从培养21d的BMSCs中,筛查出5个差异基因,与人基因库中己知基因的同源性分别达到90%以上。有兴趣的是,核心蛋白聚糖和Bax inhibitorl在培养2ld的BMSCs中差异表达。RT-PCR检测显示,核心蛋白聚糖基因在培养21d的细胞中高表达,而在12d的细胞中未检测到表达;Bax inhibitorl基因在培养21d细胞中的表达明显高于12d的细胞。  相似文献   

16.
Glucocorticoid in excess produces bone loss in vivo. Consistent with this, it reduces the stimulatory effect of transforming growth factor β (TGF-β) on collagen synthesis in osteoblast-enriched cultures in vitro, where it also suppresses TGF-β binding to its type I receptors. Analogous studies with bone morphogenetic protein-2 (BMP-2) show directly opposite results. These findings prompted us to assess the effect of glucocorticoid on BMP-2 activity in cultured bone cells, and whether either agent had a dominant influence on TGF-β binding or function. BMP-2 activity was retained in part in osteoblast-enriched cultures pre-treated or co-treated with cortisol, and was fully evident when glucocorticoid exposure followed BMP-2 treatment. In addition, BMP-2 suppressed the effects of cortisol on TGF-β activity, on TGF-β binding, and on gene promoter activity directed by a glucocorticoid sensitive transfection construct. While BMP-2 also alters the function of less-differentiated bone cells, it only minimally prevented cortisol activity in these cultures. Our studies indicate that BMP-2 can oppose certain effects by cortisol on differentiated osteoblasts, and may reveal useful ways to diminish glucocorticoid-dependent bone wasting. J. Cell. Biochem. 67:528–540, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
骨髓基质细胞移植促进心肌梗塞后血管新生机制的研究   总被引:1,自引:0,他引:1  
Mao XB  Zeng QT  Wang X  Cao LS 《中国应用生理学杂志》2005,21(3):311-314,i0004
目的:通过研究不同时期心肌梗塞区血管生长因子的表达,探讨骨髓基质细胞移植促进心肌梗塞后血管新生的机制.方法:将急性心肌梗塞大鼠随机分为2组.实验组在梗塞后28 d,将同种异体骨髓基质细胞注射到心肌梗塞区.对照组仅注射无血清的培养液.在梗塞后的不同时期取标本动态观察梗塞区VEGF、bFGF的表达和血管新生状况.结果:骨髓基质细胞移植入梗塞区后主要分化为成纤维细胞和血管内皮细胞.实验组心肌梗塞区新生毛细血管数目较对照组明显增加(14±4.7/HPF vs 6±2.4/HPF P<0.05).对照组梗塞区VEGF和bFGF的表达在梗塞后7 d达高峰,28 d开始下降,第42 d和56 d时表达明显下降.而实验组二者的表达在心肌梗塞后第42 d和56 d明显高于对照组.结论:骨髓基质细胞通过分化为内皮细胞以及促进梗塞区VEGF和bFGF的持续高表达,对血管新生起积极作用.  相似文献   

18.
19.
Transforming growth factor (TGF)-beta-induced chondrogenesis of mesenchymal stem cells derived from bone marrow involves the rapid deposition of a cartilage-specific extracellular matrix. The sequential events in this pathway leading from the undifferentiated stem cell to a mature chondrocyte were investigated by analysis of key matrix elements. Differentiation was rapidly induced in cells cultured in the presence of TGF-beta 3 or -beta 2 and was accompanied by the early expression of fibromodulin and cartilage oligomeric matrix protein. An increase in aggrecan and versican core protein synthesis defined an intermediate stage, which also involved the small leucine-rich proteoglycans decorin and biglycan. This was followed by the appearance of type II collagen and chondroadherin. The pathway was also characterized by the appearance of type X collagen, usually associated with hypertrophic cartilage. There was also a change in the pattern of sulfation of chondroitin sulfate, with a progressive increase in the proportion of 6-sulfated species. The major proportion of newly synthesized glycosaminoglycan was part of an aggregating proteoglycan network. These data allow us to define the phenotype of the differentiated cell and to understand in greater detail the sequential process of matrix assembly.  相似文献   

20.
Low oxygen tension is a potent differentiation inducer of numerous cell types and an effective stimulus of many gene expressions. Here, we described that under 8% O(2), bone marrow stromal cells (MSCs) exhibited proliferative and morphologic changes. The level of differentiated antigen H-2Dd and the number of G(2)/S/M phase cells increased evidently under 8% O(2) condition. Also, the proportion of wide, flattened, and epithelial-like cells (which were alkaline phosphatase staining positive) in MSCs increased significantly. When cultured in adipogenic medium, there was a 5- to 6-fold increase in the number of lipid droplets under hypoxic conditions compared with that in normoxic culture. We also demonstrated the existence of MSC differentiation under hypoxic conditions by electron microscopy. Expression of Oct4 was inhibited under 8% O(2) condition, but after adipocyte differentiation in normoxic culture and hypoxia-mimicking agents cobalt chloride (CoCl(2)) and deferoxamine mesylate (DFX) treatments, Oct4 was still expressed in MSCs. These results indicate hypoxia accelerates MSC differentiation and hypoxia and hypoxia-mimicking agents exert different effects on MSC differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号