首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amount and some properties of choline acetyltransferase (ChAT) and of acetylcholinesterase (AchE) were investigated in the frog vestibule. Enzyme activities were found to be of the same order of magnitude as in frog nervous tissue and various properties of vestibular ChAT (dependence on pH, chloride and Triton X-100 activation, phosphate sensitivity) and AchE (inhibition by eserine but not by Tetraisopropylpyrophosphoramide) were also similar as those of the homologous central nervous system enzymes. Although the precise localization of ChAT and AchE is not yet certain the efferent neurotransmitter in the vertebrate vestibular sensory periphery is believed to be acetylcholine and thus the enzymes responsible for its synthesis and degradation may participate in regulating inner ear function.  相似文献   

2.
We have analyzed the distribution of putative cholinergic neurons in whole-mount preparations of adult Drosophila melanogaster. Putative cholinergic neurons were visualized by X-gal staining of P-element transformed flies carrying a fusion gene consisting of 5′ flanking DNA from the choline acetyltransferase (ChAT) gene and a lacZ reporter gene. We have previously demonstrated that cryostat sections of transgenic flies carrying 7.4 kb of ChAT 5′ flanking DNA show reporter gene expression in a pattern essentially similar to the known distribution of ChAT protein. Whole-mount staining of these same flies by X-gal should thus represent the overall distribution of ChAT-positive neurons. Extensive staining was observed in the cephalic, thoracic, and stomodeal ganglia, primary sensory neurons in antenna, maxillary palps, labial palps, leg, wing, and male genitalia. Primary sensory neurons associated with photoreceptors and tactile receptors were not stained. We also examined the effects of partial deletions of the 7.4 kb fragment on reporter gene expression. Deletion of the 7.4 kb fragment to 1.2 kb resulted in a dramatic reduction of X-gal staining in the peripheral nervous system (PNS). This indicates that important regulatory elements for ChAT expression in the PNS exist in the distal region of the 7.4 kb fragment. The distal parts of the 7.4 kb fragment, when fused to a basal heterologous promoter, can independently confer gene expression in subsets of putative cholinergic neurons. With these constructs, however, strong ectopic expression was also observed in several non-neuronal tissues. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
4.
5.
There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB−/−) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB−/− adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB−/− mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron death in adult mice.  相似文献   

6.
NGF can regulate nitric oxide synthase (NOS) expression and nitric oxide (NO) can modulate NGF-mediated neurotrophic responses. To investigate the role of NO in NGF-activated expression of cholinergic phenotype, PC12 cells were treated with either the nonselective NOS inhibitor L-NAME (N (omega)-nitro-L-arginine methylester) or the inducible NOS selective inhibitor MIU (s-methylisothiourea), and the effect on NGF-stimulated ChAT mRNA levels and ChAT specific activity was determined. NGF increased steady-state levels of mRNA and protein for both inducible and constitutive isozymes of NOS in PC12 cells, and led to enhanced NOS activity and NO production. MIU and, to a lesser extent, L-NAME blocked neurite outgrowth in nerve growth factor (NGF)-treated PC12 cells. Both L-NAME and MIU attenuated NGF-mediated increases in choline transferase (ChAT)-specific activity and prevented the increase in expression of ChAT mRNA normally produced by NGF treatment of PC12 cells. The present study indicates that NO may be involved in the modulation of signal transduction pathways by which NGF leads to increased ChAT gene expression in PC12 cells.  相似文献   

7.
8.
An identified serotonergic neuron (C1) in the cerebral ganglion of Helisoma trivolvis sprouts following axotomy and rapidly (seven to eight days) regenerates to recover its regulation of feeding motor output from neurons of the buccal ganglia. The morphologies of normal and regenerated neurons C1 were compared. Intracellular injection of the fluorescent dye, Lucifer Yellow, into neuron C1 was compared with serotonin immunofluorescent staining of the cerebral and buccal ganglia. The two techniques revealed different and complimentary representations of the morphology of neuron C1. Lucifer Yellow provided optimal staining of the soma, major axon branches, and dendritic arborization. Immunocytochemical staining revealed terminal axon branches on distant targets and showed an extensive plexus of fine fibers in the sheaths of ganglia and nerve trunks. In addition to C1, serotonin-like immunoreactivity was localized in approximately 30 other neurons in each of the paired cerebral ganglia. Only cerebral neurons C1 had axons projecting to the buccal ganglia. No neuronal somata in the buccal ganglia displayed serotonin-like immunoreactivity. Observations of regenerating neurons C1 demonstrated: Actively growing neurites, both in situ and in cell culture, displayed serotonin-like immunoreactivity; severed distal axons of C1 retained serotonin-like immunoreactivity for up to 28 days; axotomized neurons C1 regenerated to restore functional control over the feeding motor program.  相似文献   

9.
We have devised a method for the parallel determination of choline acetyltransferase (CAT) and muscarinic cholinergic receptor (mCh-R) in the same brain tissue. The method for CAT activity determination is more rapid, simplified, stable, and economical than the usual Fonnum's method. With our method, age-associated changes in CAT activity and mCh-R levels were examined. Although CAT activity hardly changed with age except in a few areas, mCh-R binding of aged-rats was markedly reduced in all areas. These results suggest that the change in mCh-R represents an age-associated biochemical change in the brain and that determination of CAT activity is not sufficient for the study of age-associated changes in the brain cholinergic system.  相似文献   

10.
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter acetylcholine (ACh) and is a phenotypic marker for cholinergic neurons. Cholinergic neurons in brain are involved in cognitive function, attentional processing and motor control, and decreased ChAT activity is found in several neurological disorders including Alzheimer's disease. Dysregulation of ChAT and cholinergic communication is also associated with some spontaneous point-mutations in ChAT that alter its substrate binding kinetics, or by disruption of signaling pathways that could regulate protein kinases for which ChAT is a substrate. It has been identified recently that the catalytic activity and subcellular distribution of ChAT, and its interaction with other cellular proteins, can be modified by phosphorylation of the enzyme by protein kinase-C and Ca2+/calmodulin-dependent protein kinase II; these kinases appear also to mediate some of the effects of beta-amyloid peptides on cholinergic neuron functions, including the effects on ChAT. This review outlines a new model for the regulation of cholinergic transmission at the level of the presynaptic terminal that is mediated by hierarchically-regulated, multi-site phosphorylation of ChAT.  相似文献   

11.
Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.  相似文献   

12.
Yang P  Ying DJ  Song L  Sun JS 《生理学报》2003,55(4):428-434
采用大鼠坐骨神经切断损伤模型,行神经外膜端端对线缝合,术中依不同组别,动物于神经缝合处远端0.5cm处分别注射人的正义和反义bcl-2重组腺病毒(Ad/s-bcl-2、Ad/as-bcl-2),报道基因重组腺病毒(Ad/lacZ)和生理盐水。术后48h,7d,15d和30d常规灌注固定大鼠,取L4-L6脊髓节段,应用X-gal染色、bel-2原位杂交和免疫组化染色、TUNEL染色以及乙酰胆碱酯酶(AChE)组织化学染色方法,观察到外源基因能在脊髓中表达,同时外源性Ad/s-bcl-2能显著减少L4到L6节段脊髓前角运动神经元凋亡的数目,减少脊髓前角运动神经元中因坐骨神经切断导致的AChE活性的降低幅度,并加快其恢复。而Ad/as-bcl-2可显著增加坐骨神经切断诱导的脊髓前角运动神经元凋亡数目以及AChE活性降低幅度,并延缓其恢复。这些观察结果表明,外源性bcl-2能保护周围神经切断后引起的脊髓运动神经元损伤。  相似文献   

13.
The topographic distribution of dopamine (DA) uptake, choline uptake, choline acetyltransferase (ChAT) activity and GABA uptake within the striata of weaver mutant mice and control mice was determined. Uptake of [3H]dopamine, [3H]choline and [14C]GABA, as well as ChAT activity were determined in samples prepared from the dorsolateral, dorsomedial, ventrolateral and ventromedial portions of the striatum. In 45–60 day old control mice, dopamine uptake was homogeneously distributed throughout the striatum. On the other hand, striata from weaver mice exhibited an uneven distribution with the ventral aspects having greater uptake activity than the dorsal regions. Thus, although the ventral portion of the striatum is less severely affected than the dorsal portion, all areas of the striatum exhibited significantly reduced uptake rates. In 9 and 12 month old mice, choline uptake was higher in lateral than medial zones of the striatum of both genotypes and no differences were observed between genotypes. GABA uptake was higher in the ventral striatum than in the dorsal striatum but again no differences were found between weaver and control mice. The results of this study indicate that the entire weaver striatum is severely deficient in its ability to recapture dopamine and thus is functionally compromised. The results also indicate that the striatal cholinergic and GABAergic interneurons are not directly or indirectly affected by the weaver gene.Special ïssue dedicated to Dr. Morris H. Aprison  相似文献   

14.
15.
16.
Several lines of evidence indicate that nerve growth factor is important for the development and maintenance of the basal forebrain cholinergic phenotype. In the present study, using rat primary embryonic basal forebrain cultures, we demonstrate the differential regulation of functional cholinergic markers by nerve growth factor treatment (24–96 h). Following a 96‐h treatment, nerve growth factor (1–100 ng/mL) increased choline acetyltransferase activity (168–339% of control), acetylcholine content (141–185%), as well as constitutive (148–283%) and K+‐stimulated (162–399%) acetylcholine release, but increased release was not accompanied by increased high‐affinity choline uptake. Enhancement of ACh release was attenuated by vesamicol (1 µm ), suggesting a vesicular source, and was abolished under choline‐free conditions, emphasizing the importance of extracellular choline as the primary source for acetylcholine synthesized for release. A greater proportion of acetylcholine released from nerve growth factor‐treated cultures than from nerve growth factor‐naïve cultures was blocked by voltage‐gated Ca2+ channel antagonists, suggesting that nerve growth factor modified this parameter of neurotransmitter release. Cotreatment of NGF (20 ng/mL) with K252a (200 nm ) abolished increases in ChAT activity and prevented enhancement of K+‐stimulated ACh release beyond the level associated with K252a, suggesting the involvement of TrkA receptor signaling. Also, neurotrophin‐3, neurotrophin‐4 and brain‐derived neurotrophic factor (all at 5–200 ng/mL) increased acetylcholine release, although they were not as potent as nerve growth factor and higher concentrations were required. High brain‐derived neurotrophic factor concentrations (100 and 200 ng/mL) did, however, increase release to a level similar to nerve growth factor. In summary, long‐term exposure (days) of basal forebrain cholinergic neurons to nerve growth factor, and in a less‐potent fashion the other neurotrophins, enhanced the release of acetylcholine, which was dependent upon a vesicular pool and the availability of extracellular choline.  相似文献   

17.
The objective of our study was to analyze gene expression profiles in a complex in vivo model of solid organ transplantation, and to investigate the effects of single-gene deletions on alloimmunity. Using algorithms to generate dendrograms and self-organizing maps, we differentiated the alloimmune profiles of 16 transgenic knockout mouse strains, and identified subsets of genes that correlate with the duration of graft survival and provide candidates for prognostic and diagnostic indicators following transplantation in our model system.Communicated by C. P. Hollenberg  相似文献   

18.
TGF-beta and the regulation of neuron survival and death.   总被引:5,自引:0,他引:5  
Transforming growth factor-betas (TGF-betas) constitute a superfamily of multifunctional cytokines with important implications in morphogenesis, cell differentiation, and tissue remodeling. In the developing nervous system, TGF-beta2 and -beta3 occur in radial and astroglial cells as well as in many populations of postmitotic, differentiating neurons. TGF-beta1 is restricted to the choroid plexus and meninges. In addition to functions related to glial cell maturation and performances, TGF-beta2 and -beta3 are important regulators of neuron survival. In contrast to neurotrophic factors, as for example, neurotrophins, TGF-betas are most likely not neurotrophic by themselves. However, they can dramatically increase the potency of select neurotrophins, fibroblast growth factor-2, ciliary neurotrophic factor, and glial cell line-derived neurotrophic factor (GDNF). In the case of GDNF, we have shown that GDNF fails to promote the survival of highly purified neuron populations in vitro unless it is supplemented with TGF-beta. This also applies to the in vivo situation, where antibodies to all three TGF-beta isoforms fully prevent the trophic effect of GDNF on axotomized, target-deprived neurons. In addition to the TGF-beta isoforms -beta2 and -beta3, other members of the TGF-beta superfamily are expressed in the nervous system having important roles in embryonic patterning, cell migration, and neuronal transmitter determination. We have cloned and expressed a novel TGF-beta, named growth/differentiation factor-15 (GDF-15). GDF-15 is synthesized in the choroid plexus and released into the CSF, but also occurs in all regions investigated of the developing and adult brain. GDF-15 is a potent trophic factor for developing and 6-OHDA-lesioned midbrain dopaminergic neurons in vitro and in vivo, matching the potency of GDNF.  相似文献   

19.
The cholinergic projections from basal forebrain nuclei to the retrosplenial cortex (RSC) have previously been studied using a variety of histological approaches. Studies using acetylcholinesterase (AChE) histochemistry and choline acetyltransferase (ChAT) immunocytochemistry have demonstrated that this projection travels via the cingulum on route to the RSC. Preliminary studies from our laboratory, however, have shown that the fornix may also be involved in this projection. The present study uses the combination of pathway lesions, and the analysis of cholinergic neurochemical markers in the RSC to determine the role of the fornix in the cholinergic projection to the RSC. High affinity choline uptake (HACU) and ChAT activity were measured in the RSC of control rats, animals with cingulate lesions, and animals with fornix plus cingulate lesions. Fornix plus cingulate lesions resulted in significant deceases in HACU and ChAT activity in comparison to cingulate lesions alone. Muscarinic receptor binding was also evaluated in combination with the various lesions, and a significant increase in retrosplenial receptor binding was noted following fornix lesions. Together, these results support the concept of a fornix-mediated cholinergic pathway to the RSC.  相似文献   

20.
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to γ-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS). © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号