首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The induction of dihydrofolate reductase (DHFR), a key enzyme in DNA biosynthesis that is induced just before the onset of S phase, is markedly attenuated in senescent human fibroblasts (Pang and Chen, 1994, J. Cell. Physiol., 160:531–538). Footprinting analysis of the 365 bp promoter region of the human DHFR gene (−381 to −17) indicated that nuclear proteins bind to a cluster of cis-elements, including two overlapping E2F binding sequences, two Sp1 sites, and one Yi sequence. Gel mobility shift assays were performed to assess the role of each cis-element in the regulation of DHFR gene expression. We found that (1) Sp1 binding activity was constitutively expressed throughout the cell cycle in early passage and senescent cells; (2) Yi binding activity was undetectable in both early passage and senescent cells; and (3) E2F binding activity was serum-inducible, senescence-dependent, and prominent in presenescent cells but strikingly diminished in senescent cells. Northern blot analysis of the expression of E2F and DP family members showed that the E2F-1, E2F-4, and E2F-5 mRNA was growth- and senescence-dependent, whereas E2F-3, DP-1, and DP-2 expression was constitutive and senescence-independent. In contrast, E2F-2 mRNA was not detectable in IMR-90 or WI-38 human fibroblasts. Western blot analysis showed that among the E2F-associated proteins, the expression of E2F-1, cyclin A, and cyclin B but not p107 was cell cycle- and senescence-dependent. A nuclear extract mixing experiment suggested that an inhibitory factor may further reduce E2F binding activity in senescent cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
4.
We followed the variations of protein-DNA interactions occurring in vivo over the early firing replication origin located near the human lamin B2 gene, in IMR-90 cells synchronized in different moments of the cell cycle. In G0 phase cells no protection is present; as the cells progress in G1 phase an extended footprint covering over 100 bp appears, particularly marked at the G1/S border. As the cells enter S phase the protection shrinks to 70 bp and remains unchanged throughout this phase. In mitosis the protection totally disappears, only to reappear in its extended form as the cells move into the next G1. These variations are reminiscent of those corresponding to the formation of the pre- and post-replicative complexes described in yeast and Xenopus cells.  相似文献   

5.
6.
Mobility shift assays were used to examine protein binding to the human TK gene CCAAT boxes. Similar protein binding patterns were observed with probes containing either the proximal or distal CCAAT. However, probes containing both CCAAT boxes in which one of the CCAAT boxes was inactivated by mutation did not demonstrate identical binding patterns. One of the complexes formed with the longer probes was only observed when the distal CCAAT was intact. This species was not formed with probes that only contained an intact proximal CCAAT, and its formation could only be competed by oligonucleotides containing the distal CCAAT motif. This observation reveals the existence of a protein that can bind to the distal, but not to the proximal, CCAAT of the human TK promoter. This protein may account for the previous observation that the two CCAAT motifs are not functionally equivalent. The protein that binds to the distal, but not to the proximal, CCAAT (DTK-CBP) was also present in two human cell lines. Significantly more DTK-CBP was present in nuclear extracts of HepG2 and WI38 cells than in TK?ts13 cells. However, this protein was not observed in three different murine cell lines and one primary culture. Its abundance in some human cell lines suggests it might modulate the expression of human TK mRNA in cells that express this protein.  相似文献   

7.
8.
In order to characterize the nature of mutants induced by densely ionizing radiations at an autosomal locus, we have isolated a series of 99 thymidine kinase (tk) mutants of human TK6 lymphoblastoid cells irradiated with either fast neutrons or accelerated argon ions. Individual mutant clones were examined for alterations in their restriction fragment pattern after hybridization with a human cDNA probe for tk. A restriction fragment length polymorphism (RFLP) allowed identification of the active tk allele. Among the neutron-induced mutants, 34/52 exhibited loss of the previously active allele while 6/52 exhibited intragenic rearrangements. Among the argon-induced mutants 27/46 exhibited allele loss and 10/46 showed rearrangements within the tk locus. The remaining mutants had restriction patterns indistinguishable from the TK6 parent. Each of the mutant clones was further examined for structural alterations within the c-erbA1 locus which has been localized to chromosome 17q11-q22, at some unknown distance from the human tk locus at chromosome 17q21-q22. A substantial proportion (54%) of tk mutants induced by densely ionizing radiation showed loss of the c-erb locus on the homologous chromosome, suggesting that the mutations involve large-scale genetic changes.  相似文献   

9.
10.
11.
12.
Aging of IMR-90 human diploid fibroblasts in vitro is accompanied by significant changes of polyamine metabolism, most notably, a 5-fold decrease of serum-induced activity of ornithine decarboxylase, the key enzyme in the biosynthesis of polyamines (Chen, K. Y., Chang, Z. F., and Liu, A. Y.-C. (1986) J. Cell. Physiol. 129, 142-146). In this paper, we employed Northern blot hybridization and affinity radiolabeling techniques to investigate the molecular basis of this age-associated change of ornithine decarboxylase activity. Since the induction of ornithine decarboxylase by serum is a mid-G1 event, we also examined expressions of other cell cycle-dependent genes that are induced before and after the mid-G1 phase to determine if their expressions may also be age-dependent. Our results demonstrated a 3-fold decrease of the amount of active ornithine decarboxylase molecules that can be labeled by alpha-difluoromethyl[3H]ornithine in senescent IMR-90 cells (population doubling level (PDL) = 52) as compared to young cells (PDL = 22). However, the levels and kinetics of induction of ornithine decarboxylase mRNA in both young and senescent IMR-90 cells were found to be identical throughout a 24-h time period after serum stimulation. The time course and the magnitude of the expression of c-myc, an early G1 gene, were quite similar in young and senescent IMR-90 cells and appeared to be PDL-independent. In contrast, the expression of thymidine kinase, a late G1/S gene, was significantly reduced in senescent IMR-90 cells. Levels of thymidine kinase mRNA and thymidine kinase activity in senescent IMR-90 cells were 6- and 8-fold less than those in young cells, respectively. Based on these data, we proposed that impairment of cell cycling in senescent IMR-90 cells may occur at the late G1/S phase and that decreases of ornithine decarboxylase activity and putrescine accumulation during cell senescence may contribute to this impairment.  相似文献   

13.
14.
15.
HSV-tk基因逆转录病毒重组体的构建与DNA序列分析   总被引:3,自引:1,他引:2  
目的 构建含有单纯疱疹病毒Ⅰ型胸苷激酶 (HSV1 tk)基因的逆转录病毒重组载体pLXSN TK。方法设计一对寡核苷酸引物 ,用PCR方法从质粒pHSV10 6中特异扩增HSV tk基因片段 ( 1168bp) ,分别用BamHI和Eco RI酶切后 ,定向连接到质粒pLXSN中 ,转化宿主菌TG1,分别用上述内切酶 ,PCR和DNA测序鉴定重组质粒。结果 酶切鉴定所切下的片段和PCR扩增的片段大小均与预计相符 ,测序结果与文献报道序列及预计结果一致 ,证实符合表达框架。结论 成功构建了HSV tk嵌合重组质粒pLXSN TK。  相似文献   

16.
In order to characterize the significance of sulfur (S) nutrition in protein expression under iron (Fe)-deficient conditions, gel-based proteomic analysis was performed with the leaves of Brassica napus exposed to S and Fe combined treatments: sufficient in S and Fe (+S/+Fe, control), sufficient S but Fe deprived (+S/?Fe), deprived S but sufficient Fe (?S/+Fe), and deprived S and Fe (?S/?Fe). The resulting data showed that 15 proteins were down-regulated due to production of oxidative damage as indicated by H2O2 and O 2 ?1 localizations and due to leaf chlorosis in leaves in S-deprived leaves either in presence (?S/+Fe) or absence of Fe (?S/?Fe), whereas these down-regulated proteins were well expressed in the presence of S (+S/?Fe) compared to control (+S/+Fe). In addition, two proteins were up-regulated under S-deprived condition in presence (?S/+Fe) and absence of (?S/?Fe) Fe. The functional classification of these identified proteins was estimated that 40 % of the proteins belong to chloroplast precursor, and rest of the proteins belongs to hypothetical proteins, RNA binding, secondary metabolism and unknown proteins. On the other hand, five protein spots from S deprived (?S/+Fe) and ten spots from Fe deprived (?S/?Fe) conditions were absent, whereas they were well expressed in presence of S (+S/?Fe) compared to control plants (+S/+Fe). These results suggest that sulfur nutrition plays an important role in alleviating protein damage in Fe-deficient plants and adaptation to Fe-deficiency in oilseed rape.  相似文献   

17.
Characterization of the human insulin-like growth factor binding protein-1 (IGFBP-1) promoter was initiated to facilitate study of developmental and hormonal factors regulating IGFBP-1 production. The region immediately 5' to the IGFBP-1 mRNA capsite is typical of a eukaryotic promoter, with a TATA sequence beginning 28 base pairs (bp) and a CCAAT promoter element beginning 72 bp upstream from this capsite. A 1.3-kilobase insert containing the IGFBP-1 capsite and 1205 bp of this putative IGFBP-1 promoter region directs expression of the reporter gene chloramphenicol acetyltransferase (CAT) in an orientation-specific manner in transfected HEP G2 cells, and the capsite identified for the CAT mRNA is identical to that identified for native IGFBP-1 mRNA. These observations suggest that the 1.3-kilobase insert contains the IGFBP-1 promoter. This promoter was further characterized by deletion analysis, site-directed mutagenesis, gel mobility shift assays, and DNaseI protection assays. These studies identify the CCAAT box region as the major cis element involved in basal IGFBP-1 promoter activity in HEP G2 cells, demonstrate that increased basal promoter activity is associated with the binding of at least one HEP G2 nuclear factor to the CCAAT box region, and indicate that the DNA binding factor(s) responsible for increased basal promoter activity is related to liver factor B1. These observations suggest that liver B1 is the major trans-acting factor stimulating basal IGFBP-1 promoter activity in HEP G2 cells.  相似文献   

18.
19.
Mutagenicity of 2-amino-N6-hydroxyadenine to TK6 human lymphoblast cells   总被引:1,自引:0,他引:1  
TK6 human lymphoblast cells (tk +/-; hprt+) were treated with various concentrations of 2-amino-N6-hydroxyadenine (AHA) for 24 h. AHA was quite toxic to TK6 cells in the dose range 0-0.05 micrograms/ml, but additional toxicity was not observed between 0.05 and 0.10 micrograms/ml. AHA induced mutations at 2 distinct genetic loci: the autosomal thymidine kinase (tk) and the X-linked hypoxanthine-guanine phosphoribosyl transferase (hprt). Significant levels of both tk-NG mutants (normal growth rate of 16-18 h, colonies visible after 10-11 days incubation) and tk-SG mutants (slow growth rate of greater than 24 h, colonies visible after 18 days incubation) were induced. 15 hprt- mutants were isolated and analyzed by Southern blot. 8 of these had normal restriction fragment patterns after digestion with PstI, EcoRI, and HindIII, and were defined as 'point' mutations; the remaining 7 had partial deletions of the hprt gene. 32 tk- mutants were also isolated. 3 of 22 normal growth mutants and 6 of 10 slow growth mutants had lost the active tk allele. These data suggest that both point mutations and larger-scale alterations are induced by AHA.  相似文献   

20.
Inverted CCAAT box binding protein of 90kDa (ICBP90) is a nuclear protein involved in the topoisomerase IIalpha (TopoIIalpha) gene expression. It belongs to a family of E3 ligases of the RING finger type and its expression is deregulated in cancer cells. Previous studies have shown that high expression of ICBP90 may impair the control of G1/S transition of the cell cycle in various cancer cell lines. Since PKA signaling pathway is involved in G1/S transition of the cell cycle, the aim of the present study was to investigate whether cAMP signaling pathways involve phosphorylation of ICBP90. Here, we show that phosphorylation of ICBP90 through the cAMP signaling pathway accelerates exit of forskolin-treated cells from the G1 phase and increases binding of ICBP90 to the ICB2 element of the TopoIIalpha gene promoter with a subsequent increase of TopoIIalpha expression. We identify S298 of ICBP90 as target for PKA. We propose that cAMP signaling pathway enhances TopoIIalpha expression through ICBP90 phosphorylation, which may be one of the major events involved in the G1/S transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号