共查询到20条相似文献,搜索用时 15 毫秒
1.
Marc Vanhove Xavier Raquet Timothy Palzkill Roger H. Pain Jean-Marie Frre 《Proteins》1996,25(1):104-111
The stability and kinetics of unfolding and refolding of the P167T mutant of the TEM-1 β-lactamase have been investigated as a function of guanidine hydrochloride concentration. The activity of the mutant enzyme was not significantly modified, which strongly suggests that the Glu166–Thr167 peptide bond, like the Glu166–Pro167, is cis. The mutation, however, led to a significant decrease in the stability of the native state relative to both the thermodynamically stable intermediate and the fully unfolded state of the protein. In contrast to the two slower phases seen in the refolding of the wild-type enzyme, only one phase was detected in the refolding of the mutant, indicating a determining role of proline 167 in the kinetics of folding of the wild-type enzyme. The former phases are replaced by rapid refolding when the enzyme is unfolded for short periods of time, but the latter is independent of the time of unfolding. The monophasic refolding reaction of the mutant is proposed to reflect mainly the trans→cis isomerization of the Glu166–Thr167 peptide bond. © 1996 John Wiley & Sons, Inc. 相似文献
2.
Cis proline mutants of ribonuclease A. II. Elimination of the slow-folding forms by mutation. 总被引:2,自引:3,他引:2
下载免费PDF全文

D. A. Schultz F. X. Schmid R. L. Baldwin 《Protein science : a publication of the Protein Society》1992,1(7):917-924
Ribonuclease A is known to form an equilibrium mixture of fast-folding (UF) and slow-folding (US) species. Rapid unfolding to UF is then followed by a reaction in the unfolded state, which produces a mixture of UF, USII, USI, and possibly also minor populations of other US species. The two cis proline residues, P93 and P114, are logical candidates for producing the major US species after unfolding, by slow cis <==> trans isomerization. Much work has been done in the past on testing this proposal, but the results have been controversial. Site-directed mutagenesis is used here. Four single mutants, P93A, P93S, P114A, and P114G, and also the double mutant P93A, P114G have been made and tested for the formation of US species after unfolding. The single mutants P114G and P114A still show slow isomerization reactions after unfolding that produce US species; thus, Pro 114 is not required for the formation of at least one of the major US species of ribonuclease A. Both the refolding kinetics and the isomerization kinetics after unfolding of the Pro 93 single mutants are unexpectedly complex, possibly because the substituted amino acid forms a cis peptide bond, which should undergo cis --> trans isomerization after unfolding. The kinetics of peptide bond isomerization are not understood at present and the Pro 93 single mutants cannot be used yet to investigate the role of Pro 93 in forming the US species of ribonuclease A. The double mutant P93A, P114G shows single exponential kinetics measured by CD, and it shows no evidence of isomerization after unfolding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Guanidine hydrochloride-induced unfolding of a carbonic anhydrase molten globule was studied by high-resolution nuclear magnetic resonance spectroscopy. The study resulted in estimation of the number of water and denaturant molecules bound to the molten globule at various denaturant concentrations in solution. When compared with the data on unfolding of native carbonic anhydrase, these estimates indicate that the unfolding is underlain by an increased local concentration of the denaturant near the protein molecule, which results from the increased ratio between guanidine hydrochloride-bound and protein-bound waters. 相似文献
4.
Oleg B. Ptitsyn 《Journal of Protein Chemistry》1987,6(4):273-293
The current state of the problem of protein folding is reviewed with special attention to the novel molten globule state of the protein molecule, intermediate between the native and unfolded states. Experimental evidence on the existence of this state and its role in protein folding are compared with the sequential model of protein folding proposed by the author in 1972–1973. 相似文献
5.
J. H. Carra E. A. Anderson P. L. Privalov 《Protein science : a publication of the Protein Society》1994,3(6):944-951
Using high-sensitivity differential scanning calorimetry, we reexamined the thermodynamics of denaturation of staphylococcal nuclease. The denaturational changes in enthalpy and heat capacity were found to be functions of both temperature and pH. The denatured state of staphylococcal nuclease at pH 8.0 and high temperature has a heat capacity consistent with a fully unfolded protein completely exposed to solvent. At lower pH values, however, the heat capacity of the denatured state is lower, resulting in a lower delta Cp and delta H for the denaturation reaction. The acid-denatured protein can thus be distinguished from a completely unfolded protein by a defined difference in enthalpy and heat capacity. Comparison of circular dichroism spectra suggests that the low heat capacity of the acid-denatured protein does not result from residual helical secondary structure. The enthalpy and heat capacity changes of denaturation of a less stable mutant nuclease support the observed dependence of delta H on pH. 相似文献
6.
J. H. Carra E. A. Anderson P. L. Privalov 《Protein science : a publication of the Protein Society》1994,3(6):952-959
Staphylococcal nuclease, at low pH and in the presence of high salt concentrations, has previously been proposed to exist in a partially folded or molten globule form called the \"A-state\" (Fink et al., 1993, Protein Sci 2:1155-1160). We have found that the A-state of nuclease at pH 2.1 in the presence of moderate to high salt concentrations and at low temperature exists in a substantially folded form structurally more similar to a native state. The A-state has the far-UV circular dichroism spectra characteristic of the native protein, which indicates that it has a large degree of secondary structure. Upon heating, the A-state denatures with a sigmoidal change in far-UV ellipticity and an observable peak in a differential scanning calorimeter trace, indicating that it is thermodynamically distinct from the denatured state. Three different mutations in a residue normally buried in the protein's core stabilize or destabilize the A-state in the same way as they affect the denaturation of the native state. The A-state must, therefore, contain at least some tertiary packing of side chains. Unlike the native state, which shows cold denaturation at low temperatures, the A-state is most stable at temperatures below 0 degrees C. 相似文献
7.
The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure 总被引:91,自引:0,他引:91
K Kuwajima 《Proteins》1989,6(2):87-103
8.
《Bioscience, biotechnology, and biochemistry》2013,77(6):1498-1505
The conformation and dynamics of a protein are essential in characterizing the protein folding/unfolding intermediate state. They are closely involved in the packing and site-specific interactions of peptide elements to build and stabilize the tertiary structure of the protein. In this study, it was confirmed that trypsin inhibitor obtained from seeds of bitter gourd (BGTI) adopted a peculiar but plausible conformation and dynamics in the unfolding intermediate state. The fluorescence spectrum of one of two tryptophan residues of BGTI, Trp9, shifted to the blue side in the presence of 2–3 M guanidine hydrochloride, although the other, Trp54, did not show this spectral shift. At the same time, the motional freedom of Trp9 revealed by a time-resolved fluorescence study decreased, suggesting that the segmental motion of this residue was more restricted. These results indicate that BGTI takes such a conformation state that the hydrophobic core and loop domains arranging Trp9 and Trp54 respectively are heterogeneously packed in the unfolding intermediate state. 相似文献
9.
To study the role of Pro residues in the conformation and conformational stability of a protein, nine mutant alpha subunits of tryptophan synthase from Escherichia coli, in which Ala or Gly was substituted for each of six Pro residues (positions 28, 57, 62, 96, 132, and 207) that are conserved in 10 microorganisms, were constructed by means of site-directed mutagenesis. The far-ultraviolet (UV) CD spectra of five mutant alpha subunits with Ala in place of Pro were identical to the spectrum of the wild-type protein, the exception being the mutant at position 207 (P207A). CD values in the far-UV region were less negative for P207A, indicating that the Pro residue at position 207 plays a role in maintaining the intact structure of the alpha subunit. The negative CD values of the Gly mutants examined (P28G, P96G, and P132G) were also decreased. Calorimetric measurements showed that the two mutants at position 28 (P28G and P28A) gave two peaks in the excess heat capacity curve, whereas the wild type and other Pro mutants had only a single peak. The stability of each mutant protein relative to that of the wild type was about the same for P57A, less for P62A and P132A, and markedly decreased for P96A and P207A, which are substituted at less mobile positions. The changes of denaturation entropy (delta delta dS) at the denaturation temperature of the wild-type protein (54.1 degrees C at pH 9.0) were positive for P57A, P62A, and P132A, but negative for P96A, P207A, and P132G.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Unfolded bovine rhodanese, a sulfurtransferase, does not regain full activity upon refolding due to the formation of aggregates and disulfide-linked misfolded states unless a large excess of reductant such as 200 mM -ME and 5 mg/ml detergent are present [Tandon and Horowitz (1990), J. Biol. Chem.
265, 5967]. Even then, refolding is incomplete. We have studied the unfolding and refolding of three rhodanese forms whose crystal structures are known: ES, containing the transferred sulfur as a persulfide; E, without the transferred sulfur, and carboxymethylated rhodanese (CMR), in which the active site was blocked by chemical modification. The X-ray structures of ES, E, and CMR are virtually the same, but their tertiary structures in solution differ somewhat as revealed by near-UV CD. Among these three, CMR is the only form of rhodanese that folds reversibly, requiring 1 mM DTT. A minimum three-state folding model of CMR (NIU) followed by fluorescence at 363 nm, (NI) by fluorescence at 318 nm, and CD (IU) is consistent with the presence of a thermodynamically stable molten globule intermediate in 5–6 M urea. We conclude that the active-site sulfhydryl group in the persulfide form is very reactive; therefore, its modification leads to the successful refolding of urea-denatured rhodanese even in the absence of a large excess of reductant and detergent. The requirement for DTT for complete reversibility of CMR suggests that oxidation among the three non-active-site SH groups can represent a minor trap for refolding through species that can be easily reduced. 相似文献
11.
The replacement of tryptophan 59 of ribonuclease T1 by a tyrosine residue does not change the stability of the protein. However, it leads to a strong acceleration of a major, proline-limited reaction that is unusually slow in the refolding of the wild-type protein. The distribution of fast- and slow-folding species and the kinetic mechanism of slow folding are not changed by the mutation. Trp-59 is in close contact to Pro-39 in native RNase T1 and probably also in an intermediate that forms rapidly during folding. We suggest that this specific interaction interferes with the trans----cis reisomerization of the Tyr-38-Pro-39 bond at the stage of a native-like folding intermediate. The steric hindrance is abolished either by changing Trp-59 to a less bulky residue, such as tyrosine, or, by a destabilization of folding intermediates at increased concentrations of denaturant. Under such conditions folding of the wild-type protein and of the W59Y variant no longer differ. These results provide strong support for the proposal that trans----cis isomerization of Pro-39 is responsible for the major, very slow refolding reaction of RNase T1. They also indicate that specific tertiary interactions in folding intermediates do exist, but do not necessarily facilitate folding. They can have adverse effects and decelerate rate-limiting steps by trapping partially folded structures. 相似文献
12.
M. C. Shastry V. R. Agashe J. B. Udgaonkar 《Protein science : a publication of the Protein Society》1994,3(9):1409-1417
The fluorescence-monitored kinetics of folding and unfolding of barstar by guanidine hydrochloride (GdnHCl) in the folding transition zone, at pH 7, 25 degrees C, have been quantitatively analyzed using a 3-state mechanism: U(S)<-->UF<-->N. U(S) and UF are slow-refolding and fast-refolding unfolded forms of barstar, and N is the native protein. U(S) and UF probably differ in possessing trans and cis conformations, respectively, of the Tyr 47-Pro 48 bond. The 3-state model could be used because the kinetics of folding and unfolding of barstar show 2 phases, a fast phase and a slow phase, and because the relative amplitudes of the 2 phases depend only on the final refolding conditions and not on the initial conditions. Analysis of the observed kinetics according to the 3-state model yields the values of the 4 microscopic rate constants that describe the transitions between the 3 states at different concentrations of GdnHCl. The value of the equilibrium unfolded ratio U(S):UF (K21) and the values of the rate constants of the U(S)-->UF and UF-->U(S) reactions, k12 and k21, respectively, are shown to be independent of the concentration of GdnHCl. K21 has a value of 2.1 +/- 0.1, and k12 and k21 have values of 5.3 x 10(-3) s-1 and 11.2 x 10(-3) s-1, respectively. Double-jump experiments that monitor reactions that are silent to fluorescence monitoring were used to confirm the values of K21, k12, and k21 obtained from the 3-state analysis and thereby the validity of the 3-state model.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
Simon Allen Lewis Stevens Doris Duncan Sharon M. Kelly Nicholas C. Price 《International journal of biological macromolecules》1992,14(6):333-337
The unfolding and refolding of riboflavin-binding protein (RfBP) from hen egg-white induced by addition of guanidinium chloride (GdnHCl), and its subsequent removal by dialysis have been studied by c.d. and fluorescence for both the native and reduced protein. The reduction of its nine disulphide bonds causes a reduction in the secondary structure (alpha-helix plus beta-sheet) from 63% to 33% of the amino acid residues. Unfolding of the native protein occurred in two phases; the first involving a substantial loss of tertiary structure, followed by a second phase involving loss of secondary structure at higher GdnHCl concentrations. By contrast this biphasic behaviour was not discernible in the reduced protein. The loss of ability to bind riboflavin occurred after the first phase of unfolding. Comparison of unfolding of the holoprotein and apoprotein suggested that riboflavin has only a small stabilizing effect on the unfolding process. After removal of GdnHCl, the holoprotein, apoprotein and reduced protein assumed their original conformation. The significance of the results in relation to various models for protein folding is discussed. 相似文献
14.
The study of protein folding and unfolding pathways lends a fascinating dimension to protein biochemistry. Several models for protein folding have been postulated. Two powerful probes used in protein folding study are far UV-CD monitored stopped flow kinetics and pulse hydrogen exchange in conjunction with NMR. The formation of molten globule, which is an intermediate possessing secondary structure but not a well packed tertiary structure, is now emerging as a common feature on the folding pathway of many proteins. The molten globule is recognized by a class of molecules called chaperones which act as accelerators of protein folding. This article ends by elucidating why proteins are Nature's choice as catalysts. 相似文献
15.
Previous results from equilibrium and kinetic studies of the folding of bovine growth hormone (bGH) have demonstrated that bGH does not follow a simple two-step folding mechanism. These results are summarized and interpreted according to the "molten globule" model. The molten globule state of bGH is characterized as a folding intermediate which is largely alpha-helical, retains a compact hydrodynamic radius, has packing of the aromatic side chains that is similar to the unfolded state, and possesses a solvent-exposed hydrophobic surface along helix 106-127 that readily leads to association. 相似文献
16.
Abdullah Naiyer Md. Imtaiyaz Hassan Asimul Islam Monica Sundd 《Journal of biomolecular structure & dynamics》2013,31(10):2267-2284
Almost all proteins fold via a number of partially structured intermediates such as molten globule (MG) and pre-molten globule states. Understanding the structure of these intermediates at atomic level is often a challenge, as these states are observed under extreme conditions of pH, temperature, and chemical denaturants. Furthermore, several other processes such as chemical modification, site-directed mutagenesis (or point mutation), and cleavage of covalent bond of natural proteins often lead to MG like partially unfolded conformation. However, the dynamic nature of proteins in these states makes them unsuitable for most structure determination at atomic level. Intermediate states studied so far have been characterized mostly by circular dichroism, fluorescence, viscosity, dynamic light scattering measurements, dye binding, infrared techniques, molecular dynamics simulations, etc. There is a limited amount of structural data available on these intermediate states by nuclear magnetic resonance (NMR) and hence there is a need to characterize these states at the molecular level. In this review, we present characterization of equilibrium intermediates by biophysical techniques with special reference to NMR. 相似文献
17.
Quezada CM Schulman BA Froggatt JJ Dobson CM Redfield C 《Journal of molecular biology》2004,338(1):149-158
NMR spectroscopy has been used to follow the urea-induced unfolding of the low pH molten globule states of a single-disulfide variant of human alpha-lactalbumin ([28-111] alpha-LA) and of two mutants, each with a single proline substitution in a helix. [28-111] alpha-LA forms a molten globule very similar to that formed by the wild-type four-disulfide protein, and this variant has been used as a model for the alpha-lactalbumin (alpha-LA) molten globule in a number of studies. The urea-induced unfolding behavior of [28-111] alpha-LA is similar to that of the four-disulfide form of the protein, except that [28-111] alpha-LA is less stable and has greater cooperativity in the loss of different elements of structure. For one mutant, L11P, the helix containing the mutation is highly destabilized such that it is completely unfolded even in the absence of urea. By contrast, for the other mutant, Q117P, the helix containing the mutation retains its compact structure. Both mutations, however, show significant long-range destabilization of the overall fold showing that the molten globule state has a degree of global cooperativity. The results reveal that different permutations of three of the four major alpha-helices of the protein can form a stable, locally cooperative, compact structural core. Taken together, these findings demonstrate that the molten globule state of alpha-LA is an ensemble of conformations, with different subsets of structures linked by a range of long-range interactions. 相似文献
18.
C. K. Lau S. C. Lo W. Li D. R. Churchich F. Kwok J. E. Churchich 《Journal of Protein Chemistry》1998,17(8):789-797
The stability of porcine brain inositol monophosphatase in the presence of increasing concentrations of urea was investigated at pH 7.5. Exposure of the enzyme to 8 M urea brings about the dissociation of the dimeric species of 58 kDa into monomeric forms as revealed by gel filtration chromatography. Unfolding of the protein by 8 M urea results in a decrease of the ellipticity at 220 nm (20%) together with a perturbation of the near-UV circular dichroism spectrum. Urea-treated inositol monophosphatase binds Co2+ ions with a dissociation constant of 3.3 M. The enzyme is catalytically competent when assayed with 4-nitrophenyl-phosphate in the presence of the activating ion Co2+ at pH 7.5 in 8 M urea. The apparent activation constant for Co2+ is 2.5 mM. It is postulated that partially folded conformations of monomeric species preserve their catalytic function because the affinity of Co2+ ions for the metal coordination center of the protein is not perturbed by exposure to 8 M urea. 相似文献
19.
Y. X. Fan J. M. Zhou H. Kihara C. L. Tsou 《Protein science : a publication of the Protein Society》1998,7(12):2631-2641
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the \"molten globule\" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed. 相似文献
20.
Azarkan M Amrani A Zerhouni S Oberg KA Ruysschaert JM Wintjens R Looze Y 《Biopolymers》2002,65(5):325-335
Papaya glutamine cyclase (PQC), a glycoprotein with a molecular mass of 32,980 Da, is a minor constituent of the papaya latex protein fraction. In neutral aqueous solutions, PQC adopts an all-beta conformation and exhibits high resistance to both proteolysis and denaturation. Complete unfolding of PQC requires a combination of an acidic medium and chemical denaturant such as urea or guanidine hydrochloride. The unfolding process takes place through formation of an intermediate A state that accumulates in the absence of chemical denaturants and displays all the features of a molten globule state. The different conformational states-N (native), A (acid-inactivated), and U (unfolded)-have been characterized by means of circular dichroism measurements, fluorescence spectroscopies, Stokes radii determinations, and 8-anilino-1-naphtalenesulfonic acid (ANS) binding characteristics. The unfolding pathways of the enzyme was further studied to estimate thermodynamic parameters characterizing both transitions N if A and A if U. In its A state, PQC is catalytically inefficient and highly susceptible to proteolysis. Also, its thermodynamic stability is decreased by some 3-5 kcal/mol. Conversion of the native to the A state involves digging up of five amino functions together with protonation of four to five acidic groups with pK(a)s, in the native state, around 2.7. It proceeds both cooperatively and reversibly although, in vitro, the refolding process is slow. Unfolding of the A state, on the other hand, occurs with a low degree of cooperativity. The intermediate A state thus seems to be only marginally more stable than the unfolded state. The role of suspected internal ion pairs in the stabilization of the native state of this enzyme is discussed. 相似文献