首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Conformational energy calculations have been used to study the role of the proline residues in the folding of bovine pancreatic trypsin inhibitor. In the calculation, each of the four proline residues of this small protein is forced from the trans to cis peptide isomer while still part of the native folded structure. The cis proline residue can always be accommodated by small changes of the native conformation (< 1 Å root-mean-square deviation). For three of the four proline residues, Pro2, Pro9 and Pro 13, being in the cis form is calculated to destabilize the folded conformation by less than 11 kcal/mol, suggesting that rapid folding to a stable native-like conformation can occur with either isomeric form. For one of these three, Pro13, the destabilization is only 1 kcal/mol, suggesting the existence of an alternative folded native conformation with Pro13 cis. The fourth proline residue, Pro8, is calculated to destabilize the native conformation by so much (33 kcal/mol) that it will block folding in the manner proposed by Brandts et al. (1975).  相似文献   

2.
FIS, the factor for inversion stimulation, from Escherichia coli and other enteric bacteria, is an interwined alpha-helical homodimer. Size exclusion chromatography and static light scattering measurements demonstrated that FIS is predominately a stable dimer at the concentrations (1-10 microM monomer) and buffer conditions employed in this study. The folding and unfolding of FIS were studied with both equilibrium and kinetic methods by circular dichroism using urea and guanidinium chloride (GdmCl) as the perturbants. The equilibrium folding is reversible and well-described by a two-state folding model, with stabilities at 10 degrees C of 15.2 kcal mol(-1) in urea and 13.5 kcal mol(-1) in GdmCl. The kinetic data are consistent with a two-step folding reaction where the two unfolded monomers associate to a dimeric intermediate within the mixing time for the stopped-flow instrument (<5 ms), and a slower, subsequent folding of the dimeric intermediate to the native dimer. Fits of the burst phase amplitudes as a function of denaturant showed that the free energy for the formation of the dimeric intermediate constitutes the majority of the stability of the folding (9.6 kcal mol(-1) in urea and 10.5 kcal mol(-1) in GdmCl). Folding-to-unfolding double jump kinetic experiments were also performed to monitor the formation of native dimer as a function of folding delay times. The data here demonstrate that the dimeric intermediate is obligatory and on-pathway. The folding mechanism of FIS, when compared to other intertwined, alpha-helical, homodimers, suggests that a transient kinetic dimeric intermediate may be a common feature of the folding of intertwined, segment-swapped, alpha-helical dimers.  相似文献   

3.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

4.
The stability and kinetics of unfolding and refolding of the P167T mutant of the TEM-1 β-lactamase have been investigated as a function of guanidine hydrochloride concentration. The activity of the mutant enzyme was not significantly modified, which strongly suggests that the Glu166–Thr167 peptide bond, like the Glu166–Pro167, is cis. The mutation, however, led to a significant decrease in the stability of the native state relative to both the thermodynamically stable intermediate and the fully unfolded state of the protein. In contrast to the two slower phases seen in the refolding of the wild-type enzyme, only one phase was detected in the refolding of the mutant, indicating a determining role of proline 167 in the kinetics of folding of the wild-type enzyme. The former phases are replaced by rapid refolding when the enzyme is unfolded for short periods of time, but the latter is independent of the time of unfolding. The monophasic refolding reaction of the mutant is proposed to reflect mainly the transcis isomerization of the Glu166–Thr167 peptide bond. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
We have examined the folding and unfolding of the caspase recruitment domain of procaspase-1 (CP1-CARD), a member of the alpha-helical Greek key protein family. The equilibrium folding/unfolding of CP1-CARD is described by a two-state mechanism, and the results show CP1-CARD is marginally stable with a DeltaG(H2O) of 1.1 +/- 0.2 kcal/mole and an m-value of 0.65 +/- 0.06 kcal/mole/M (10 mM Tris-HCl at pH 8.0, 1 mM DTT, 25 degrees C). Consistent with the equilibrium folding data, CP1-CARD is a monomer in solution when examined by size exclusion chromatography. Single-mixing stopped-flow refolding and unfolding studies show that CP1-CARD folds and unfolds rapidly, with no detectable slow phases, and the reactions appear to reach equilibrium within 10 msec. However, double jump kinetic experiments demonstrate the presence of an unfolded-like intermediate during unfolding. The intermediate converts to the fully unfolded conformation with a half-time of 10 sec. Interrupted refolding studies demonstrate the presence of one or more nativelike intermediates during refolding, which convert to the native conformation with a half-time of about 60 sec. Overall, the data show that both unfolding and refolding processes are slow, and the pathways contain kinetically trapped species.  相似文献   

6.
The folding pathway of the third domain of PDZ from the synaptic protein PSD-95 was characterized using kinetic and equilibrium methods by monitoring the fluorescence signal from a Trp residue that is incorporated at a near-surface position. Kinetic folding of this domain showed multiple exponential phases, whereas unfolding showed a single exponential phase. The slow kinetic phases were attributed to isomerization of proline residues, since there are five proline residues in this domain. We found that the logarithms of the rate constants for the fast phase of folding and unfolding are linearly dependent on the concentrations of denaturant. The unfolding free energy derived from these rate constants at zero denaturant was close to the value measured using the equilibrium method, suggesting the absence of detectable sub-millisecond folding intermediates. However, native-state hydrogen exchange experiments detected a partially unfolded intermediate under native conditions. It was further confirmed by a protein engineering study. These data suggest that a hidden intermediate exists after the rate-limiting step in the folding of the third domain of PDZ.  相似文献   

7.
A point mutation (I53A) in the core of Escherichia coli RNase H* is known to destabilize both the native conformation (DeltaG(UN)) and the kinetic intermediate (DeltaG(UI)) by 2 kcal/mole. Here, we have used native-state hydrogen deuterium exchange to ask how this destabilization is propagated throughout the molecule. Stability parameters were obtained for individual residues in I53A and compared with those from the wild-type protein. A destabilization of 2 kcal/mole was observed in residues in the core but was not detected in the periphery of the molecule. These results are consistent with the localized destabilization of the core observed in the early intermediate of the kinetic folding pathway, supporting the resemblance of this kinetic intermediate to the partially unfolded form detected in the native state at equilibrium. A thermodynamic cycle also shows no interaction between Ile 53 and a residue in the periphery. There is, however, an increase in the number of denaturant-independent exchange events in the periphery of I53A, showing that effects of the point mutation are communicated to regions outside the core, although perhaps not through changes in stability. In sum, this work shows that localized regions within a protein can be destabilized independently. Furthermore, it implies a correspondence between the kinetic intermediate and the equilibrium PUF, as the magnitude and localization of the destabilization are the same in both.  相似文献   

8.
Thermally unfolded staphylococcal nuclease has been rapidly quenched to temperatures near 0 degree C and the refolding behavior examined using an NMR kinetic experiment. Unfolded protein, exhibiting random coil chemical shifts, persists following the quench and refolds in two distinct kinetic phases. A protein folding intermediate with a trans Lys 116-Pro 117 peptide bond is transiently overpopulated and relaxes to the predominantly cis native cis-trans equilibrium. The rate of trans-->cis isomerization in the native-like nuclease intermediate is approximately 100-fold faster than that observed in a Lys-Pro model peptide. The activation enthalpy of 20 kcal/mol observed for the nuclease Lys 116-Pro 117 peptide bond is comparable to that observed for other X-Pro isomerizations.  相似文献   

9.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

10.
The equilibrium denaturation of human growth hormone (hGH) derived from heterologous gene expression in Escherichia coli was studied. Denaturation was measured by ultraviolet absorbance, intrinsic fluorescence, far ultraviolet circular dichroism, and size exclusion chromatography. The denaturation transitions obtained from each method of detection were coincident, indicating a two-state denaturation mechanism. The denaturation transitions were independent of the concentration of protein. The Gibbs free energy of unfolding is 14.5 +/- 1 kcal/mol. Human growth hormone contains two disulfide bridges between residues 53-165 (large loop) and 182-189 (small loop). The small loop was selectively reduced and cysteines alkylated with iodoacetic acid or iodoacetamide. The tetra-S-carbamidomethylated and tetra-S-carboxymethylated derivatives were also prepared. All S-alkylated hGH forms were indistinguishable from the native conformations in the absence of denaturant by far ultraviolet circular dichroism. The circular dichroism-detected equilibrium denaturation of each derivative was determined and the Gibbs free energy of unfolding of the tetra-S-modified forms was 5.3 +/- 0.5 kcal/mol and of the di-S-alkylated derivatives was 11.2 +/- 0.8 kcal/mol. These results for hGH are different than previously obtained results for bovine, ovine, and rat growth hormones. Stable equilibrium intermediates have been identified for these non-human species of growth hormone. The stable intermediates observed in the denaturation of reduced, alkylated hGH or nonhunam growth hormones are similar and characterized as compact, helical, lacking native-like tertiary structure, and having a tendency to aggregate. The apparent absence of intermediates in the folding of oxidized hGH is due to the relative instability of intermediates compared with their native structures. The hGH conformation is at least 5 kcal/mol more stable than the growth hormones from other species. Reduction and alkylation of the disulfide bridges of hGH diminish the stability differences between the native and intermediate states, such that the denaturation behavior is similar to the nonhuman growth hormones with well-populated intermediates. Most proteins do not demonstrate equilibrium folding intermediates presumably because intermediates are only marginally stable in conditions that disrupt the native state. The folding results with hGH and alkylated hGH substantiate this.  相似文献   

11.
The sodium perchlorate-induced conformational transition of Staphylococcal nuclease has been monitored by both circular dichroism (CD) and fluorescence spectroscopy. The perchlorate-induced transition is cooperative as observed by both spectroscopic signals. However, the protein loses only about one-third of its native far-UV CD signal at high perchlorate concentrations, indicating that a significant amount of secondary structure remains in the post-transition state. The remaining CD signal can be further diminished in a cooperative manner by the addition of the strong denaturant, urea. Near-UV CD spectra clearly show that the protein loses its tertiary structure in the perchlorate-induced denatured state. The perchlorate-induced transition curves were fit to the standard two-state model and the standard free energy change and m value of the transition are 2.3kcal/mol and 1.8kcal/(molM), respectively. By comparison, the urea-induced unfolding of Staphylococcal nuclease (in the absence of perchlorate) yields an unfolding free energy change, DeltaG(0,un), of 5.6kcal/mol and an m value of 2.3kcal/(molM). Thus, the thermodynamic state obtained in the post-transition region of perchlorate-induced conformation transition has a significantly lower free energy change, a high content of secondary structure, and diminished tertiary structure. These results suggest that the perchlorate-induced denatured state is a partially folded equilibrium state. Whether this intermediate is relevant to the folding/unfolding path under standard conditions is unknown at this time.  相似文献   

12.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

13.
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.  相似文献   

14.
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands β3 and β5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly‐Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process.  相似文献   

15.
The propensity for peptide bonds to adopt the trans configuration in native and unfolded proteins, and the relatively slow rates of cis-trans isomerization reactions, imply that the formation of cis peptide bonds in native conformations are likely to limit folding reactions. The role of the conserved cis Gly95-Gly96 peptide bond in dihydrofolate reductase (DHFR) from Escherichia coli was examined by replacing Gly95 with alanine. The introduction of a beta carbon at position 95 is expected to increase the propensity for the trans isomer and perturb the isomerization reaction required to reach the native conformation. Although G95A DHFR is 1.30 kcal mol(-1) less stable than the wild-type protein, it adopts a well-folded structure that can be chemically denatured in a cooperative fashion. The mutant protein also retains the complex refolding kinetic pattern attributed to a parallel-channel mechanism in wild-type DHFR. The spectroscopic response upon refolding monitored by Trp fluorescence and the absence of a Trp/Trp exciton coupling apparent in the far-UV CD spectrum of the wild-type protein, however, indicated that the tertiary structure of the folded state for G95A DHFR is altered. The addition of methotrexate (MTX), a tight-binding inhibitor, to folded G95A DHFR restored the exciton coupling and the fluorescence properties through five slow kinetic events whose relaxation times are independent of the ligand and the denaturant concentrations. The results were interpreted to mean that MTX-binding drives the formation of the cis isomer of the peptide bond between Ala95 and Gly96 in five compact and stable but not wild-type-like conformations that contain the trans isomer. Folding studies in the presence of MTX for both wild-type and G95A DHFR support the notion that the cis peptide bond between Gly95 and Gly96 in the wild-type protein forms during four parallel rate-limiting steps, which are primarily controlled by folding reactions, and lead directly to a set of native, or native-like, conformers. The isomerization of the cis peptide bond is not a source of the parallel channels that characterize the complex folding mechanism for DHFR.  相似文献   

16.
Alternatively folded states of an immunoglobulin   总被引:1,自引:0,他引:1  
Well-defined, non-native protein structures of low stability have been increasingly observed as intermediates in protein folding or as equilibrium structures populated under specific solvent conditions. These intermediate structures, frequently referred to as molten globule states, are characterized by the presence of secondary structure, a lack of significant tertiary contacts, increased hydrophobicity and partial specific volume as compared to native structures, and low cooperativity in thermal unfolding. The present study demonstrates that under acidic conditions (pH less than 3) the antibody MAK33 can assume a folded stable conformation. This A-state is characterized by a high degree of secondary structure, increased hydrophobicity, a native-like maximum wavelength of fluorescence emission, and a tendency toward slow aggregation. A prominent feature of this low-pH conformation is the stability against denaturant and thermal unfolding that is manifested in highly cooperative reversible phase transitions indicative of the existence of well-defined tertiary contacts. These thermodynamic results are corroborated by the kinetics of folding from the completely unfolded chain to the alternatively folded state at pH 2. The given data suggest that MAK33 at pH 2 adopts a cooperative structure that differs from the native immunoglobulin fold at pH 7. This alternatively folded state exhibits certain characteristics of the molten globule but differs distinctly from it by its extraordinary structural stability that is characteristic for native protein structures.  相似文献   

17.
Measuring the stability of integrated membrane proteins under equilibrium conditions is hampered by the nature of the proteins' amphiphilic environment. While intrinsic fluorescence is a useful probe for structural changes in water-soluble proteins, the fluorescence of membrane proteins is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS) and dodecyl maltoside (DM). This analysis incorporates both folding and unfolding rates, making it possible to determine both the stability of the native state and the process by which the protein folds. Refolding and unfolding occur on the second to millisecond timescale and involve only one relaxation phase, when monitored by conventional stopped-flow. The kinetic data indicate that denaturation occurs around 0.3 mole fraction of SDS, in agreement with CD analysis and acrylamide quenching data. The rate constants have been fit to a three-state folding scheme involving the SDS-denatured state, the native state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic data are always open to alternative interpretations, time-resolved studies in mixed micelles provide a useful approach to measure membrane protein stability over a wide range of concentrations of SDS and DM, as well as a framework for the future characterization of the DsbB folding mechanism.  相似文献   

18.
The folding mechanism of cellular retinoic acid binding protein I (CRABP I), cellular retinol binding protein II (CRBP II), and intestinal fatty acid binding protein (IFABP) were investigated to determine if proteins with similar native structures have similar folding mechanisms. These mostly β-sheet proteins have very similar structures, despite having as little as 33% sequence similarity. The reversible urea denaturation of these proteins was characterized at equilibrium by circular dichroism and fluorescence. The data were best fit by a two-state model for each of these proteins, suggesting that no significant population of folding intermediates were present at equilibrium. The native states were of similar stability with free energies (linearly extrapolated to 0 M urea, ΔG) of 6.5, 8.3, and 5.5 kcal/mole for CRABP I, CRBP II, and IFABP, respectively. The kinetics of the folding and unfolding processes for these proteins was monitored by stopped-flow CD and fluorescence. Intermediates were observed during both the folding and unfolding of all of these proteins. However, the overall rates of folding and unfolding differed by nearly three orders of magnitude. Further, the spectroscopic properties of the intermediate states were different for each protein, suggesting that different amounts of secondary and/or tertiary structure were associated with each intermediate state for each protein. These data show that the folding path for proteins in the same structural family can be quite different, and provide evidence for different folding landscapes for these sequences. Proteins 33:107–118, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
During denaturant-induced equilibrium (un)folding of wild-type apoflavodoxin from Azotobacter vinelandii, a molten globule-like folding intermediate is formed. This wild-type protein contains three tryptophans. In this study, we use a general approach to analyze time-resolved fluorescence and steady-state fluorescence data that are obtained upon denaturant-induced unfolding of a single-tryptophan-containing variant of apoflavodoxin [i.e., W74/F128/F167 (WFF) apoflavodoxin]. The experimental data are assembled in matrices, and subsequent singular-value decomposition of these matrices (i.e., based on either steady-state or time-resolved fluorescence data) shows the presence of three significant, and independent, components. Consequently, to further analyze the denaturation trajectories, we use a three-state protein folding model in which a folding intermediate and native and unfolded protein molecules take part. Using a global analysis procedure, we determine the relative concentrations of the species involved and show that the stability of WFF apoflavodoxin against global unfolding is ~4.1 kcal/mol. Analysis of time-resolved anisotropy data of WFF apoflavodoxin unfolding reveals the remarkable observation that W74 is equally well fixed within both the native protein and the molten globule-like folding intermediate. Slight differences between the direct environments of W74 in the folding intermediate and native protein cause different rotameric populations of the indole in both folding species as fluorescence lifetime analysis reveals. Importantly, thermodynamic analyses of the spectral denaturation trajectories of the double-tryptophan-containing protein variants WWF apoflavodoxin and WFW apoflavodoxin show that these variants are significantly more stable (5.9 kcal/mol and 6.8 kcal/mol, respectively) than WFF apoflavodoxin (4.1 kcal/mol) Hence, tryptophan residues contribute considerably to the 10.5 kcal/mol thermodynamic stability of native wild-type apoflavodoxin.  相似文献   

20.
To monitor the fast compaction process during protein folding, we have used a stopped-flow small-angle X-ray scattering technique combined with a two-dimensional charge-coupled device-based X-ray detector that makes it possible to improve the signal-to-noise ratio of data dramatically, and measured the kinetic refolding reaction of alpha-lactalbumin. The results clearly show that the radius of gyration and the overall shape of the kinetic folding intermediate of alpha-lactalbumin are the same as those of the molten globule state observed at equilibrium. Thus, the identity between the kinetic folding intermediate and the equilibrium molten globule state is firmly established. The present results also suggest that the folding intermediate is more hydrated than the native state and that the hydrated water molecules are dehydrated when specific side-chain packing is formed during the change from the molten globule to the native state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号