首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 68 kDa Src substrate associated during mitosis is an RNA binding protein with Src homology 2 and 3 domain binding sites. A role for Src associated in mitosis 68 as an adaptor protein in signaling transduction has been proposed in different systems such as T-cell receptors. In the present work, we have sought to assess the possible role of Src associated in mitosis 68 in insulin receptor signaling. We performed in vivo studies in HTC-IR cells and in vitro studies using recombinant Src associated in mitosis 68, purified insulin receptor and fusion proteins containing either the N-terminal or the C-terminal Src homology 2 domain of p85 phosphatidylinositol-3-kinase. We have found that Src associated in mitosis 68 is a substrate of the insulin receptor both in vivo and in vitro. Moreover, tyrosine-phosphorylated Src associated in mitosis 68 was found to associate with p85 phosphatidylinositol-3-kinase in response to insulin, as assessed by co-immunoprecipitation studies. Therefore, Src associated in mitosis 68 may be part of the signaling complexes of insulin receptor along with p85. In vitro studies demonstrate that Src associated in mitosis 68 associates with the Src homology 2 domains of p85 after tyrosine phosphorylation by the activated insulin receptor. Moreover, tyr-phosphorylated Src associated in mitosis 68 binds with a higher affinity to the N-terminal Src homology 2 domain of p85 compared to the C-terminal Src homology 2 domain of p85, suggesting a preferential association of Src associated in mitosis 68 with the N-terminal Src homology 2 domain of p85. This association may be important for the link of the signaling with RNA metabolism.  相似文献   

2.
The hematopoietic lineage cell-specific protein HS1 was shown to undergo a process of sequential phosphorylation both in vitro and in vivo, which is synergistically mediated by Syk and Src family protein-tyrosine kinases and essential for B cell antigen receptor-mediated apoptosis. We have now identified tyrosine 222 as the HS1 residue phosphorylated by the Src family protein kinases c-Fgr and Lyn, and we show that a truncated form of HS1 (HS1-208-401) lacking the N-terminal putative DNA binding region and the C-terminal Src homology 3 (SH3) domain is still able to undergo all the steps of sequential phosphorylation as efficiently as full-length HS1. We also show that a stable association of phospho-HS1 with c-Fgr through its SH2 domain requires previous autophosphorylation of the kinase and is prevented by subsequent phosphorylation of Tyr-222. Kinetic studies with HS1 and its truncated forms previously phosphorylated by Syk and with a peptide substrate reproducing the sequence around tyrosine 222 support the view that efficient phosphorylation of HS1 by Src family protein kinases entirely relies on TyrP-SH2 domain interaction with negligible, if any, contribution of local specificity determinants. Our data indicate that the proline-rich region of HS1 bordered by tyrosyl residues affected by Syk and Src family kinases represents a functional domain designed to undergo a process of sequential phosphorylation.  相似文献   

3.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

4.
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P3 (but not Ins-1,3,5-P3) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.  相似文献   

5.
p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events.  相似文献   

6.
The Arp2/3 complex can be independently activated to initiate actin polymerization by the VCA domain of WASP family members and by the acidic N-terminal and F-actin-binding repeat region of cortactin, which possesses a C-terminal SH3 domain. Cortactin is a target for phosphorylation by Src tyrosine kinases and by serine/threonine kinases that include Erk. Here we demonstrate that cortactin binds N-WASP and WASP via its SH3 domain, induces in vitro N-WASP-mediated actin polymerization, and colocalizes with N-WASP and WASP at sites of active actin polymerization. Erk phosphorylation and a mimicking S405,418D double mutation enhanced cortactin binding and activation of N-WASP. In contrast, Src phosphorylation inhibited the ability of cortactin previously phosphorylated by Erk, and that of S405,418D double mutant cortactin, to bind and activate N-WASP. Furthermore, Y-->D mutation of three tyrosine residues targeted by Src (Y421, Y466, and Y482) inhibited the ability of S405,418D cortactin to activate N-WASP. We propose that Erk phosphorylation liberates the SH3 domain of cortactin from intramolecular interactions with proline-rich regions, causing it to synergize with WASP and N-WASP in activating the Arp2/3 complex, and that Src phosphorylation terminates cortactin activation of N-WASP and WASP.  相似文献   

7.
Two eps8 isoforms, p97eps8 and p68eps8, were previously identified as substrates for receptor tyrosine kinases. Analysis of eps8 phosphotyrosine content in v-Src transformed cells (IV5) revealed that both isoforms were highly tyrosyl phosphorylated and their readiness to be phosphorylated by Src in vitro further indicated that they were putative Src substrates as well. Indeed, the enhancement of tyrosyl phosphorylation of p97eps8 detected in cells coexpressing both p97eps8 and active Src relative to that in cells expressing p97eps8 alone supported our hypothesis. The existence of common phosphotryptic peptides between in vitro 32P-labeled p97eps8 and p68eps8 indicated that these two proteins shared the same Src-mediated sites. Further in vitro binding assays demonstrated that p68eps8 was the major eps8 isoforms that could be precipitated by bacterial fusion protein containing Src SH3. Interestingly, both p68eps8 and p97eps8 were preferentially expressed in v-Src transformed cells and the presence of p68eps8 appeared to depend on Src. Since p97eps8 has been implicated in mitogenesis and tumorigenesis, its readiness to be phosphorylated and induced by v-Src might attribute to v-Src-mediated transformation.  相似文献   

8.
When purified p60v-src was mixed with lysates of chicken embryo fibroblasts and immunoprecipitated with anti-Src antibody, phosphatidylinositol (PI)-3 kinase activity was found to be present in the Src protein immunoprecipitates. The level of bound PI-3 kinase activity was 5 to 10 times higher in lysates obtained from cells transformed by the src, fps, or yes oncogene than in lysates of uninfected cells. This increase in associated PI-3 kinase activity appears to be due to increased binding of this enzyme to p60v-src. This change most likely resulted from tyrosine phosphorylation of PI-3 kinase or an associated protein, since the PI-3 kinase activity that can bind to p60v-src was depleted by antiphosphotyrosine antibody. Binding of PI-3 kinase did not require either p60src protein kinase activity or autophosphorylation of p60v-src tyrosine residues. Furthermore, binding was markedly decreased by deletions in the N-terminal SH2 region but unchanged by deletion of the C-terminal half of p60v-src containing the catalytic domain. Taking these data together, it appears that PI-3 kinase or its associated protein is phosphorylated on tyrosine and that the phosphorylated form can bind to the N-terminal half of p60v-src, which contains the SH2 domain.  相似文献   

9.
Direct interaction of focal adhesion kinase with p190RhoGEF   总被引:12,自引:0,他引:12  
Focal adhesion kinase (FAK) is a protein-tyrosine kinase that associates with multiple cell surface receptors and signaling proteins through which it can modulate the activity of several intracellular signaling pathways. FAK activity can influence the formation of distinct actin cytoskeletal structures such as lamellipodia and stress fibers in part through effects on small Rho GTPases, although the molecular interconnections of these events are not well defined. Here, we report that FAK interacts with p190RhoGEF, a RhoA-specific GDP/GTP exchange factor, in neuronal cells and in brain tissue extracts by co-immunoprecipitation and co-localization analyses. Using a two-hybrid assay and deletion mutagenesis, the binding site of the FAK C-terminal focal adhesion targeting (FAT) domain was identified within the C-terminal coiled-coil domain of p190RhoGEF. Binding was independent of a LD-like binding motif within p190RhoGEF, yet FAK association was disrupted by a mutation (Leu-1034 to Ser) that weakens the helical bundle structure of the FAK FAT domain. Neuro-2a cell binding to laminin increased endogenous FAK and p190RhoGEF tyrosine phosphorylation, and co-transfection of a dominant-negative inhibitor of FAK activity, termed FRNK, inhibited lamininstimulated p190RhoGEF tyrosine phosphorylation and p21 RhoA GTP binding. Overexpression of FAK in Neuro-2a cells increased both endogenous p190RhoGEF tyrosine phosphorylation and RhoA activity, whereas these events were inhibited by FRNK co-expression. Because insulin-like growth factor 1 treatment of Neuro-2a cells increased FAK tyrosine phosphorylation and enhanced p190RhoGEF-mediated activation of RhoA, our results support the conclusion that FAK association with p190RhoGEF functions as a signaling pathway downstream of integrins and growth factor receptors to stimulate Rho activity.  相似文献   

10.
Many in vivo substrates of Src family tyrosine kinases possess sequences conforming to Src homology 2 and 3 (SH2 and SH3) domain-binding motifs. One such substrate is p130Cas, a protein that is hyperphosphorylated in v-Src transformed cells. Cas contains a substrate domain consisting of 15 potential tyrosine phosphorylation sites, C- and N-terminal polyproline regions fitting the consensus sequence for SH3 domain ligands, and a YDYV motif that binds the Src SH2 domain when phosphorylated. In an effort to understand the mechanisms of processive phosphorylation, we have explored the regions of Cas necessary for interaction with Src using the yeast two-hybrid system. Mutations in the SH2 domain-binding region of Cas or the Src SH2 domain have little effect in Cas-Src complex formation or phosphorylation. However, disruption of the C-terminal polyproline region of Cas completely abolishes interaction between the two proteins and results in impaired phosphorylation of Cas. Kinetic analyses using purified proteins indicated that multisite phosphorylation of Cas by Src follows a processive rather than a distributive mechanism. Furthermore, the kinetic studies show that there are two properties of the polyproline region of Cas that are important in enhancing substrate phosphorylation. First, the C-terminal polyproline serves to activate Src kinases through the process of SH3 domain displacement. Second, this region aids in anchoring the kinase to Cas to facilitate processive phosphorylation of the substrate domain. The two processes combine to ensure phosphorylation of Cas with high efficiency.  相似文献   

11.
p190 RhoGAP is a 190-kDa protein that stably associates with p120 RasGAP and regulates actin dynamics through members of the Rho family of small GTPases. Previous studies have indicated a direct relationship between levels of p190 tyrosine phosphorylation, the extent and kinetics of epidermal growth factor (EGF)-induced actin rearrangements, and EGF-induced cell cycle progression, suggesting that p190 links Ras-mediated mitogenic signaling with signaling through the actin cytoskeleton. Determining which tyrosine residues in p190 are phosphorylated, what factors regulate phosphorylation of these sites, and what effect tyrosine phosphorylation has on p190 function is key to understanding the role(s) that p190 may play in these processes. To begin investigating these questions, we used biochemical approaches to characterize the number and relative levels of in vivo-phosphorylated tyrosine residues on endogenous p190 from C3H10T1/2 murine fibroblasts. Only two tryptic phosphopeptides containing phosphotyrosine (p-Tyr), a major site, identified as Y1105, and a minor, unidentified site, were detected. Phosphorylation of Y1105, but not the minor site, was modulated in vivo to a greater extent by overexpression of c-Src than by the EGF receptor and was efficiently catalyzed by c-Src in vitro, indicating that Y1105 is a selective and preferential target of c-Src both in vitro and in vivo. In vitro and in vivo coprecipitation analysis using glutathione S-transferase (GST) fusion proteins containing wild-type and Y1105F variants of the p190 middle domain, variants of full-length p190 ectopically expressed in COS-7 cells, and endogenous p190 and p120 in C3H10T1/2 cells revealed that p190 could bind to p120 in the presence and absence of p190 tyrosine phosphorylation. p-Tyr-independent complexes comprised 10 to 20% of the complexes formed in the presence of p-Tyr. Mutation of Y1105 from Tyr to Phe resulted in complete loss of p-Tyr-dependent complex formation, indicating that p-Y1105 was the sole p-Tyr residue mediating binding to p120. These studies describe a specific mechanism by which c-Src can regulate p190-p120 association and also document a significant role for p-Tyr-independent means of p190-p120 binding.  相似文献   

12.
We found that engagement of beta(2) integrins on human neutrophils induced activation of RhoA, as indicated by the increased ratio of GTP:GTP + GDP recovered on RhoA and translocation of RhoA to a membrane fraction. The clustering of beta(2) integrins also induced a time-dependent increase in GDP bound to RhoA, which correlated with beta(2) integrin-induced activation of p190RHOGAP: The activation of p190RhoGAP was completely blocked by [4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] (PP1), a selective inhibitor of Src family tyrosine kinases. However, clustering of beta(2) integrins did not increase the basal tyrosine phosphorylation of p190RhoGAP, nor did it affect the amount of p120RasGAP bound to p190RHOGAP: Instead, the beta(2) integrin-induced activation of p190RhoGAP was accompanied by increased tyrosine phosphorylation of a p190RhoGAP-associated protein, p120RasGAP, and accumulation of both p120RasGAP and p190RhoGAP in a membrane fraction. PP1 blocked the beta(2) integrin-induced phosphorylation of p120RasGAP, as well as the translocation of p190RhoGAP and p120RasGAP, but it did not affect the accumulation of RhoA in the membrane fraction. In agreement with the mentioned findings, PP1 also increased the GTP:GTP + GDP ratio recovered on RhoA immunoprecipitated from beta(2) integrin-stimulated cells. Thus, in neutrophils, beta(2) integrin-induced activation of p190RhoGAP requires a signal from a Src family tyrosine kinase, but it does not occur via the signaling pathway responsible for activation of RHOA:  相似文献   

13.
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.  相似文献   

14.
A number of cellular processes, such as proliferation, differentiation, and transformation, are regulated by cell-extracellular matrix interactions. Previous studies have identified a novel tyrosine kinase, the focal adhesion kinase p125FAK, as a component of cell adhesion plaques. p125FAK was identified as a 125-kDa tyrosine-phosphorylated protein in cells transformed by the v-src oncogene. p125FAK is an intracellular protein composed of three domains: a central domain with homology to protein tyrosine kinases, flanked by two noncatalytic domains of 400 amino acids which bear no significant homology to previously cloned proteins. p125FAK is believed to play an important regulatory role in cell adhesion because it localizes to cell adhesion plaques and because its phosphorylation on tyrosine residues is regulated by binding of cell surface integrins to the extracellular matrix. Recent studies have shown that Src, through its SH2 domain, stably associates with pp125FAK and that this association prevents dephosphorylation of pp125FAK in vitro by protein tyrosine phosphatases. In this report, we identify Tyr-397 as the primary in vivo and in vitro site of p125FAK tyrosine phosphorylation and association with Src. Substituting phenylalanine for tyrosine at position 397 significantly reduces p125FAK tyrosine phosphorylation and association with Src but does not abolish p125FAK kinase activity. In addition, p125FAK kinase is able to trans-phosphorylate Tyr-397 in vitro in a kinase-deficient p125FAK variant. Phosphorylation of Tyr-397 provides a site [Y(P)AEI] that fits the consensus sequence for the binding of Src.  相似文献   

15.
Multiple in vivo tyrosine phosphorylation sites in EphB receptors   总被引:8,自引:0,他引:8  
Kalo MS  Pasquale EB 《Biochemistry》1999,38(43):14396-14408
Autophosphorylation regulates the function of receptor tyrosine kinases. To dissect the mechanism by which Eph receptors transmit signals, we have developed an approach using matrix-assisted laser desorption-ionization (MALDI) mass spectrometry to map systematically their in vivo tyrosine phosphorylation sites. With this approach, phosphorylated peptides from receptors digested with various endoproteinases were selectively isolated on immobilized anti-phosphotyrosine antibodies and analyzed directly by MALDI mass spectrometry. Multiple in vivo tyrosine phosphorylation sites were identified in the juxtamembrane region, kinase domain, and carboxy-terminal tail of EphB2 and EphB5, and found to be remarkably conserved between these EphB receptors. A number of these sites were also identified as in vitro autophosphorylation sites of EphB5 by phosphopeptide mapping using two-dimensional chromatography. Only two in vitro tyrosine phosphorylation sites had previously been directly identified for Eph receptors. Our data further indicate that in vivo EphB2 and EphB5 are also extensively phosphorylated on serine and threonine residues. Because phosphorylation at each site can affect receptor signaling properties, the multiple phosphorylation sites identified here for the EphB receptors suggest a complex regulation of their functions, presumably achieved by autophosphorylation as well as phosphorylation by other kinases. In addition, we show that MALDI mass spectrometry can be used to determine the binding sites for Src homology 2 (SH2) domains by identifying the EphB2 phosphopeptides that bind to the SH2 domain of the Src kinase.  相似文献   

16.
Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.  相似文献   

17.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Many cellular signaling proteins contain SH3 (Src homology 3) domains that mediate protein interactions via specific proline-containing peptides. Unlike SH2 domains, whose interactions with tyrosine-containing peptides are promoted by phosphorylation of the SH2 binding site, the regulatory mechanism for SH3 interactions is unclear. p120 RasGAP (GTPase-activating protein), which contains an SH3 domain flanked by two SH2 domains, forms an abundant SH2-mediated complex with p190 RhoGAP in cells expressing activated tyrosine kinases. We have identified two closely linked tyrosine-containing peptides in p190 that bind simultaneously to the RasGAP SH2 domains upon p190 phosphorylation. This interaction is expected to bring the two SH2 domains into close proximity. Consequently, RasGAP undergoes a conformational change that results in a 100-fold increase in the accessibility of the target binding surface of its SH3 domain. These results indicate that the tandem arrangement of SH2 and SH3 domains found in a variety of cellular signaling proteins can provide a conformational mechanism for regulating SH3-dependent interactions through tyrosine phosphorylation. In addition, it appears that the role of p190 in the RasGAP signaling complex is to promote additional protein interactions with RasGAP via its SH3 domain.  相似文献   

19.
The genome of avian sarcoma virus CT10 encodes a fusion protein in which viral Gag sequences are fused to cellular Crk sequences containing primarily Src homology 2 (SH2) and Src homology 3 (SH3) domains. Transformation of chicken embryo fibroblasts (CEF) with the Gag-Crk fusion protein results in the elevation of tyrosine phosphorylation on specific cellular proteins with molecular weights of 130,000, 110,000, and 70,000 (p130, p110, and p70, respectively), an event which has been correlated with cell transformation. In this study, we have identified the 70-kDa tyrosine-phosphorylated protein in CT10-transformed CEF (CT10-CEF) as paxillin, a cytoskeletal protein suggested to be important for organizing the focal adhesion. Tyrosine-phosphorylated paxillin was found to be complexed with v-Crk in vivo as evident from coimmunoprecipitation studies. Moreover, a bacterially expressed recombinant glutathione S-transferase (GST)-CrkSH2 fragment bound paxillin in vitro with a subnanomolar affinity, suggesting that the SH2 domain of v-Crk is sufficient for binding. Mapping of the sequence specificity of a GST-CrkSH2 fusion protein with a partially degenerate phosphopeptide library determined a motif consisting of pYDXP, and in competitive coprecipitation studies, an acetylated A(p)YDAPA hexapeptide was able to quantitatively inhibit the binding of GST-CrkSH2 to paxillin and p130, suggesting that it meets the minimal structural requirements necessary for the interaction of CrkSH2 with physiological targets. To investigate the mechanism by which v-Crk elevates the tyrosine phosphorylation of paxillin in vivo, we have treated normal CEF and CT10-CEF with sodium vanadate to inhibit protein tyrosine phosphatase activity. These data suggest that paxillin is involved in a highly dynamic kinase-phosphatase interplay in normal CEF and that v-Crk binding may interrupt this balance to increase the steady-state level of tyrosine phosphorylation. By contrast, the 130-kDa protein was not tyrosine phosphorylated upon vanadate treatment of normal CEF and only weakly affected in the CT10-CEF, suggesting that a different mechanism may be involved in its phosphorylation.  相似文献   

20.
The activated platelet-derived growth factor (PDGF) receptor physically associates with p85, a subunit of phosphatidylinositol-3 kinase. Although this interaction may activate phosphatidylinositol-kinase and is crucial for PDGF-induced mitogenesis, it has not been shown whether p85 is modified in the process. p85 contains two SH2 (Src homology) domains, designated SH2-N and SH2-C. Recent experiments have shown that the SH2-C domain alone determines high-affinity binding of p85 to the PDGF receptor. The function of SH2-N, which binds receptors with lower affinity, is unknown. In this study, using a receptor-blotting technique, we find that p85 is modified by PDGF stimulation of intact cells. This modification involves inhibition of binding of the SH2-N region of p85 to the PDGF receptor. Studies with vanadate suggest that tyrosine phosphorylation of p85 is responsible for the modification of p85 detected by receptor blotting. Furthermore, recombinant p85 is modified in a similar manner when it is tyrosine phosphorylated in vitro by PDGF receptors. Tyrosine phosphorylation of p85 does not block binding of the SH2-C domain and therefore does not release p85 from high-affinity binding sites on the receptor in vitro. Instead, phosphorylation may regulate the ability of the SH2-N of p85 to bind to a different portion of the PDGF receptor or to another molecule in the signaling complex. This study provides the first evidence that p85 is tyrosine phosphorylated upon PDGF stimulation of cells and suggests that tyrosine phosphorylation of p85 regulates its activity or its interaction with other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号