首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posttranslational modifications that give rise to multiple forms of α-amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) were studied. When analyzed by denaturing polyacrylamide gel electrophoresis, barley α-amylase has a molecular mass of 43 to 44 kilodaltons, but isoelectric focusing resolves the enzyme into a large number of isoforms. To precisely identify these isoforms, we propose a system of classification based on their isoelectric points (pl). α-Amylases with pls of approximately 5, previously referred to as low pl or Amy1 isoforms, have been designated HAMY1, and α-amylases with pls of approximately 6, referred to as high pl or Amy2, are designated HAMY2. Individual isoforms of HAMY1 and HAMY2 are identified by their pls. For example, the most acidic α-amylase synthesized and secreted by barley aleurone layers is designated HAMY1(4.56). Some of the diversity in the pls of barley α-amylases arises from posttranslational modifications of the enzyme. We report the isolation of a factor from barley aleurone layers and incubation media that can modify HAMY1 isoforms in vitro. This factor has a molecular mass between 30 and 50 kilodaltons, and it can catalyze the conversion of HAMY1(4.90) and HAMY1(4.64) to isoforms 4.72 and 4.56, respectively. The in vitro conversion of HAMY1 isoforms by the factor is favored by pH values of approximately 5 and is inhibited at approximately pH 7. The level of this factor in aleurone layers and incubation media is not affected by treatment of the tissue with gibberellic acid. The amylase-modifying activity from barley will also modify α-amylases isolated from human saliva and porcine pancreas. An activity that can modify HAMY1 isoforms in vitro has also been isolated from Onozuka R10 cellulase. Because the activity isolated from barley lowers the pl of α-amylase from barley, human saliva, and porcine pancreas, we speculate that it is a deamidase.  相似文献   

2.
The effect of temperature on α-amylase synthesis and secretion from barley (c.v. Himalaya) half-seeds and aleurone layers is reported. Barley half-seeds incubated at 15 C in gibberellic acid (GA) concentrations of 0.5 and 5 micromolar for 16 hours do not release α-amylase. Similarly, isolated aleurone layers of barley do not release α-amylase when incubated for 2 or 4 hours at temperatures of 15 C or below following 12 hours incubation at 25 C at GA concentrations from 50 nanomolar to 50 micromolar. There is an interaction between temperature and GA concentration for the process of α-amylase release from aleurone layers; thus, with increasing GA concentration, there is an increase in the Q10 of this process. A thermal gradient bar was used to resolve the temperature at which the rate of α-amylase release changes; thermal discontinuity was observed between 19 and 21 C. The time course of the response of aleurone tissue to temperature was determined using a continuous monitoring apparatus. Results show that the effect of low temperature is detectable within minutes, whereas recovery from exposure to low temperature is also rapid. Although temperature has a marked effect on the amount of α-amylase released from isolated aleurone layers, it does not significantly affect the accumulation of α-amylase within the tissue. At all GA concentrations above 0.5 nanomolar, the level of extractable α-amylase is unaffected by temperatures between 10 and 28 C. It is concluded that the effect of temperature on α-amylase production from barley aleurone layers is primarily on the process of enzyme secretion.  相似文献   

3.
Aleurone layers isolated from half-seeds of Himalaya barley (Hordeum vulgare cv Himalaya) disinfected in hypochlorite solutions containing 1.0% available chlorine synthesized significantly less α-amylase in response to gibberellic acid than layers derived from half-seeds disinfected in 0.1% hypochlorite. This effect of hypochlorite involved neither a differential decrease in the synthesis of group A or B α-amylase isozymes nor a general decrease in α-amylase synthesis attributable to fewer viable aleurone cells in layers from half-seeds disinfected with 1% hypochlorite. Our results emphasize the need to evaluate the potential effects of routine disinfection procedures used in physiological and biochemical studies.  相似文献   

4.
Summary The localization of -amylase (EC 3.2.1.1) in barley (Hordeum vulgare L. cv Himalaya) aleurone protoplasts was studied using electron microscope immunocytochemistry. Antibodies were raised against total barley -amylase, i.e., -amylase containing both highisoelectric point (high-pI) and low-pI isoforms, as well as against purified high- and low-pI isoforms. All antibodies localized -amylase to the endoplasmic reticulum (ER) and Golgi apparatus (GApp) of the aleurone cell, and various controls showed that the labeling was specific for -amylase. Labeling of protein bodies and spherosomes, which are the most abundant organelles in this cell, was very low. There was no evidence that -amylase isoforms were differentially distributed within different compartments of the endomembrane system. Rather, both high- and low-pI isoforms showed the same pattern of distribution in ER and in the cis, medial, and transregions of the GApp. We conclude that in the Himalaya cultivar of barley, all isoforms of -amylase are transported to the plasma membrane via the GApp.Abbreviations ER endoplasmic reticulum - GA3 gibberellic acid - GApp Golgi apparatus - PBS phosphate buffered saline - PCR partially coated reticulum - PM plasma membrane - TBS Tris buffered saline - TGN trans-Golgi network  相似文献   

5.
The addition of abscisic acid to barley (Hordeum vulgare L. cv. Himalaya) aleurone layers at the same time as gibberellic acid completely prevents the gibberellin-induced increases in the percentage of polysomes, the formation of polyribosomes, and the synthesis of α-amylase, even when the molar concentration of gibberellic acid is four times greater than the concentration of abscisic acid. The addition of abscisic acid to aleurone cells producing α-amylase (midcourse addition) inhibits the further synthesis of α-amylase and decreases the percentage of polysomes but does not change the number of ribosomes per cell.  相似文献   

6.
α-Amylase levels in intact seeds of barley (Hordeum vulgare L. cv. Himalaya) reach a maximum at 3 to 4 days of germination while gibberellin levels continue to increase beyond 6 days of germination. In contrast to its effect on half seeds, gibberellic acid does not increase the total amount of α-amylase produced in germinating seeds. The inability of gibberellic acid to stimulate α-amylase production is not related to its availability; rather, evidence suggests that a factor(s) in whole seeds prevents further enhancement of α-amylase formation and accumulation. Hydrolysis products accumulate in the subaleurone space of the endosperm of germinating seeds up to concentrations of 570 milliosmolar. Chromatography of these hydrolysis products indicate the presence of maltose and glucose. Calculations based on reducing sugar determinations show that glucose accounts for as much as 57% of the solutes present in the endosperm fluid. Both maltose and glucose in the range of 0.2 to 0.4 M effectively inhibit the production of α-amylase by isolated barley aleurone layers. This inhibition is quantitatively similar to that brought about by solutions of polyethylene glycol and mannitol. On the basis of these data we propose that hydrolysis products which accumulate in the starchy endosperm of germinating seeds function to regulate the production of hydrolytic enzymes by the aleurone layer.  相似文献   

7.
Amylases from aleurone layers and starchy endosperm of barley seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
Amylases from incubated aleurone layers or from starchy endosperm of barley seeds (Hordeum vulgare L. cv. Himalaya) were investigated using acrylamide gel electrophoresis and analytical gel filtration with Sephadex G-200. Electrophoresis of amylase from aleurone layers yields seven visually distinct isozymes with an estimated molecular weight of 43,000. Because each isozyme hydrolyzes β-limit dextrin azure and incorporates calcium-45, they are α-amylases. On Sephadex G-200, amylase from the aleurone layers is separated into seven fractions ranging in estimated molecular weights from 45,000 to 3,000. Little or no activity is observed when six fractions are subjected to electrophoresis. Electrophoresis of only the fraction with the estimated molecular weight of 45,000 gave the seven isozymes. The amylases are heat labile and cannot be stabilized by the presence of substrate or by the protease inhibitor, phenylmethylsulfonylfluoride. Electrophoresis of amylase from the starchy endosperm yields nine β-amylases. Four of these β-amylases are isozymes with an estimated molecular weight of 43,000. The other five forms of β-amylase represent molecular aggregates of the four basic β-amylase monomers. A dimer, a tetramer, and an octamer of β-amylase can be identified with estimated molecular weights of about 86,000, 180,000 and 400,000, respectively. These estimated molecular weights were confirmed on Sephadex G-200. There are five additional fractions of β-amylase with estimated molecular weights ranging from 30,000 to 4,000. These fractions are not observed electrophoretically.  相似文献   

8.
Moll BA  Jones RL 《Plant physiology》1982,70(4):1149-1155
The secretion of α-amylase from single isolated (Hordeum vulgare L. cv Himalaya) aleurone layers was studied in an automated flow-through apparatus. The apparatus, consisting of a modified sample analyzer linked to a chart recorder, automatically samples the flow-through medium at 1 minute intervals and assays for the presence of α-amylase. The release of α-amylase from aleurone layers begins after 5 to 6 hours of exposure to gibberellic acid and reaches a maximum rate after 10 to 12 hours. The release of α-amylase shows a marked dependence on Ca2+, and in the absence of Ca2+ it is only 20% of that in the presence of 10 millimolar Ca2+. Withdrawal of Ca2+ from the flow-through medium results in the immediate cessation of enzyme release and addition of Ca2+ causes immediate resumption of the release process. The effect of Ca2+ is concentration-dependent, being half-maximal at 1 millimolar Ca2+ and saturated at 10 millimolar Ca2+. Ruthenium red, which blocks Ca2+ but not Mg2+ efflux from barley aleurone layers, renders α-amylase release insensitive to Ca2+ withdrawal. Inhibitors of respiratory metabolism cause a burst of α-amylase release which lasts for 0.5 to 5 hours. Following this phase of enhanced α-amylase release, the rate of release declines to zero. Pretreatment of aleurone layers with HCl prior to incubation in HCN also causes a burst of α-amylase release, indicating that the inhibitor is affecting the secretion of α-amylase and not its movement through the cell wall. The rapid inhibition of α-amylase release upon incubation of aleurone layers at low temperature (5°C) or in 0.5 molar mannitol also indicates that enzyme release is dependent on a metabolically linked process and is not diffusion-limited. This conclusion is supported by cytochemical observations which show that, although the cell wall matrix of aleurone layers undergoes extensive digestion after gibberellin treatment, the innermost part of the cell wall is not degraded and could influence enzyme release.  相似文献   

9.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

10.
Amylases in developing barley seeds   总被引:5,自引:2,他引:3       下载免费PDF全文
The amylases of developing barley seeds (Hordeum vulgare L. cv. Himalaya) were investigated by colorimetric and electrophoretic methods. Maxima of amylolytic activity appeared in the aleurone layers and starchy endosperm at 5 and 20 days after anthesis. Amylase from 5-day-old aleurone layers could be separated into four rapidly moving bands with α-amylase activity. By 20 days the four bands had been replaced by seven bands of medium mobility. These seven bands of amylase were electrophoretically identical to those observed when mature aleurone layers are treated with gibberellic acid. Immature aleurone layers failed to respond to exogenous gibberellic acid. In the starchy endosperm the seven bands of medium mobility were also present. Calcium-dependent alterations in the electrophoretic mobility and activity of particular bands occurred during the maturation of the starchy endosperm. Treatment of the immature starchy endosperm with papain yielded four forms of β-amylase.  相似文献   

11.
Lin PP 《Plant physiology》1984,74(4):975-983
Polyamine metabolism and its relation to the induction of α-amylase formation in the aleurone layers of barley seeds (Hordeum vulgare cv Himalaya) in response to gibberellic acid (GA3) has been investigated. A high-performance liquid chromatographic system has been employed for qualitative and quantitative analyses of putrescine (Put), cadaverine (Cad), spermidine (Spd), spermine (Spm), and agmatine (Agm).

Active polyamine metabolism occurs in the aleurone cells of deembryonate barley half seeds during imbibition. The aleurone layers isolated from fully imbibed half seeds contain about 880 nanomoles of Put, 920 nanomoles of Spd, and 610 nanomoles of Spm as free form per gram tissue dry weight while the levels of Cad and Agm are relatively low. The polyamine levels do not change significantly in the aleurone layers in response to added GA3 (1.5 micromolar) during the 8-hour lag period of the growth substance-induced formation of α-amylase. Also, the polyamine levels are not altered by the presence of abscisic acid (3 micromolar) which inhibits the enzyme induction by GA3. Kinetic studies show that both applied [U-14C]ornithine and [U-14C]arginine are primarily incorporated into Put during 2 hours of incubation, but the incorporation is not significantly affected by added GA3. Additionally, added GA3 does not affect the uptake and turnover of [1,4-14C]Put, nor does it affect the conversion of Put → Spd or Spd → Spm. Treatment of the aleurone layers with GA3 for 2 hours results in no significant changes in the total activities or the specific activities of ornithine decarboxylase and arginine decarboxylase.

Experiments with polyamine synthesis inhibitors demonstrate that the level of Spd in the aleurone layers could be substantially reduced by the presence of methylglyoxal-bis(guanylhydrazone) (MGBG) during imbibition. MGBG treatment does not affect in vivo incorporation of [8-14C] adenosine into ATP. The lower the level of Spd the less α-amylase formation is induced by added GA3. The reduction of GA3-induced α-amylase formation by MGBG treatment can be either completely or partially overcome by added Spd, depending upon the concentration of MGBG used in the imbibition medium. The results indicate that the early action of GA3, with respect to induction of α-amylase formation in barley aleurone layers, appears to be not on polyamine metabolism. However, polyamines, particularly Spd, may be involved in regulation of the growth substance-dependent enzyme induction.

  相似文献   

12.
After 4 days in an atmosphere of N2, aleurone layers of barley (Hordeum vulgare L. cv Himalaya) remained viable as judged by their ability to produce near normal amounts of α-amylases when incubated with gibberellic acid (GA3) in air. However, layers did not produce α-amylase when GA3 was supplied under N2, apparently because α-amylase mRNA failed to accumulate.  相似文献   

13.
Ho TH  Shih SC 《Plant physiology》1980,66(1):153-157
A method, based on the diffusion assay of α-amylase on agar plates, was developed to screen for barley (Himalaya) mutants with altered sensitivity to gibberellic acid (GA3) or abscisic acid (ABA) in their aleurone layers. The seeds produced by sodium azide-mutagenized barley were screened for their ability to synthesize and secrete α-amylase when treated with different combinations of hormones. Various GA3-insensitive or supersensitive, ABA-insensitive, temperature-dependent GA3-insensitive, and constitutive mutants have been identified. Several stable mutants with altered GA3 sensitivity were recovered. Two of the homozygous GA3-insensitive mutants have been preliminarily characterized. The GA3-enhanced production of α-amylase and release of phosphatase are hampered in these mutants. However, they have normal stem height, and the uptake of GA3 by their aleurone layers appears to be the same as that of wild-type barley. They are most likely regulatory mutants affecting both α-amylase synthesis and phosphatase release.  相似文献   

14.
Jones RL 《Plant physiology》1969,44(1):101-104
Both polyethylene glycol (PEG) and mannitol inhibit gibberellic acid-induced α-amylase production in barley aleurone layers. The effect of the osmotic solution is on enzyme synthesis rather than α-amylase secretion. The inhibition of α-amylase synthesis does not appear to be mediated via an indirect effect on respiration or protein synthesis. Rather it seems that the osmotic solutions reduce the extent of proteolysis of the stored aleurone grain protein thus making available less substrate for new protein synthesis.  相似文献   

15.
Secretion—the outward movement of molecules across the plasmalemma—of α-amylase by barley (Hordeum vulgare L. cv. Himalaya) aleurone layers is an energy-dependent process that is not directly dependent upon protein synthesis or RNA synthesis and does not appear to be under the direct control of gibberellic acid or abscisic acid. Release—the movement of the secreted α-amylase molecules through the walls into the surrounding medium—is apparently diffusion limited and is markedly dependent upon the presence of ions.  相似文献   

16.
Sun Z  Henson CA 《Plant physiology》1990,94(1):320-327
The initial hydrolysis of native (unboiled) starch granules in germinating cereal kernels is considered to be due to α-amylases. We report that barley (Hordeum vulgare L.) seed α-glucosidases (EC 3.2.1.20) can hydrolyze native starch granules isolated from barley kernels and can do so at rates comparable to those of the predominant α-amylase isozymes. Two α-glucosidase charge isoforms were used individually and in combination with purified barley α-amylases to study in vitro starch digestion. Dramatic synergism, as much as 10.7-fold, of native starch granule hydrolysis, as determined by reducing sugar production, occurred when high pl α-glucosidase was combined with either high or low pl α-amylase. Synergism was also found when low pl α-glucosidase was combined with α-amylases. Scanning electron micrographs revealed that starch granule degradation by α-amylases alone occurred specifically at the equatorial grooves of lenticular granules. Granules hydrolyzed by combinations of α-glucosidases and α-amylases exhibited larger and more numerous holes on granule surfaces than did those granules attacked by α-amylase alone. As the presence of α-glucosidases resulted in more areas being susceptible to hydrolysis, we propose that this synergism is due, in part, to the ability of the α-glucosidases to hydrolyze glucosidic bonds other than α-1,4- and α-1,6- that are present at the granule surface, thereby eliminating bonds which were barriers to hydrolysis by α-amylases. Since both α-glucosidase and α-amylase are synthesized in aleurone cells during germination and secreted to the endosperm, the synergism documented here may function in vivo as well as in vitro.  相似文献   

17.
The effect of gibberellic acid and Ca2+ on the accumulation of α-amylase mRNAs in aleurone layers of barley (Hordeum vulgare L. cv Himalaya) was studied using cDNA clones containing sequences of mRNAs for the high and low isoelectric point (pI) α-amylases. There is no significant hybridization between the two α-amylase cDNA clones under the hybridization and washing conditions employed. These clones were therefore used to monitor levels of mRNAs for high and low pI α-amylases. It is shown that although the synthesis of the high pI α-amylase proteins depends on the presence of Ca2+ in the incubation medium, the accumulation of mRNA for this group occurs to the same degree in the presence or the absence of Ca2+. The accumulation of low pI α-amylase mRNA is also not affected by the presence or absence of Ca2+ in the incubation medium. These results establish gibberellic acid, not Ca2+, as the principal regulator of α-amylase mRNA accumulation in barley aleurone, while Ca2+ controls high pI α-amylase synthesis at a later step in the biosynthetic pathway.  相似文献   

18.
Schuurink RC  Sedee NJ  Wang M 《Plant physiology》1992,100(4):1834-1839
The relationship between barley grain dormancy and gibberellic acid (GA3) responsiveness of aleurone layers has been investigated. Barley (Hordeum distichum L. cvs Triumph and Kristina) grains were matured under defined conditions in a phytotron. Grains of Triumph plants grown under long-day/warm conditions had lower dormancy levels than grains of plants grown under short-day/cool conditions. Aleurone layers isolated from grains of long-day Triumph plants secreted more α-amylase and had a higher responsiveness to GA3 as measured by α-amylase secretion. Storage of the grains increased both the percentage of germination and the responsiveness of the aleurone to GA3. Use of different sterilization methods to break dormancy confirmed the correlation between germination percentage and aleurone layer GA3 responsiveness. The response of embryoless Triumph grains to GA3 was lower than that of the isolated aleurone layers, suggesting a role of the starchy endosperm in regulating the GA3 response of the aleurone layer. Grains of the cultivar Kristina harvested from short day- and long day-grown plants lacked dormancy, and their isolated aleurone layers had a similar responsiveness to GA3 as measured by α-amylase secretion. The data indicate that the physiological state of the aleurone layers contributes to the percentage germination of the grains.  相似文献   

19.
Substrate induction of nitrate reductase in barley aleurone layers   总被引:5,自引:5,他引:5       下载免费PDF全文
Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of α-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce α-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of α-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.  相似文献   

20.
Polyclonal antibodies raised against barley (1→3,1→4)-β-d-glucanase, α-amylase and carboxypeptidase were used to detect precursor polypeptides of these hydrolytic enzymes among the in vitro translation products of mRNA isolated from the scutellum and aleurone of germinating barley. In the scutellum, mRNA encoding carboxypeptidase appeared to be relatively more abundant than that encoding α-amylase or (1→3,1→4)-β-d-glucanase, while in the aleurone α-amylase and (1→3,1→4)-β-d-glucanase mRNAs predominated. The apparent molecular weights of the precursors for (1→3,1→4)-β-d-glucanase, α-amylase, and carboxypeptidase were 33,000, 44,000, and 35,000, respectively. In each case these are slightly higher (1,500-5,000) than molecular weights of the mature enzymes. Molecular weights of precursors immunoprecipitated from aleurone and scutellum mRNA translation products were identical for each enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号