首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reducing iron (Fe) levels in a defined minimal medium reduced the growth yields of planktonic and biofilm Pseudomonas aeruginosa, though biofilm biomass was affected to the greatest extent and at FeCl3 concentrations where planktonic cell growth was not compromised. Highlighting this apparently greater need for Fe, biofilm growth yields were markedly reduced in a mutant unable to produce pyoverdine (and, so, deficient in pyoverdine-mediated Fe acquisition) at concentrations of FeCl3 that did not adversely affect biofilm yields of a pyoverdine-producing wild-type strain. Concomitant with the reduced biofilm yields at low Fe concentrations, P. aeruginosa showed enhanced twitching motility in Fe-deficient versus Fe-replete minimal media. A mutant deficient in low-Fe-stimulated twitching motility but normal as regards twitching motility on Fe-rich medium was isolated and shown to be disrupted in rhlI, whose product is responsible for synthesis of the N-butanoyl homoserine lactone (C4-HSL) quorum-sensing signal. In contrast to wild-type cells, which formed thin, flat, undeveloped biofilms in Fe-limited medium, the rhlI mutant formed substantially developed though not fully mature biofilms under Fe limitation. C4-HSL production increased markedly in Fe-limited versus Fe-rich P. aeruginosa cultures, and cell-free low-Fe culture supernatants restored the twitching motility of the rhlI mutant on Fe-limited minimal medium and stimulated the twitching motility of rhlI and wild-type P. aeruginosa on Fe-rich minimal medium. Still, addition of exogenous C4-HSL did not stimulate the twitching motility of either strain on Fe-replete medium, indicating that some Fe-regulated and RhlI/C4-HSL-dependent extracellular product(s) was responsible for the enhanced twitching motility (and reduced biofilm formation) seen in response to Fe limitation.  相似文献   

2.
3.
It has been widely reported that quorum-sensing incapable strains of Pseudomonas aeruginosa are less virulent than wild type strains. However, quorum sensing mutants of P. aeruginosa have been shown to develop other spontaneous mutations under prolonged culture conditions, and one of the phenotypes of P. aeruginosa that is frequently affected by this phenomenon is type IV pili-dependent motility, referred to as twitching motility. As twitching motility has been reported to be important for adhesion and colonisation, we aimed to generate a quorum-sensing knockout for which the heritage was recorded and the virulence factor production in areas unrelated to quorum sensing was known to be intact. We created a lasIRrhlIR quadruple knockout in PAO1 using a published technique that allows for the deletion of antibiotic resistance cartridges following mutagenesis, to create an unmarked QS knockout of PAO1, thereby avoiding the need for use of antibiotics in culturing, which can have subtle effects on bacterial phenotype. We phenotyped this mutant demonstrating that it produced reduced levels of protease and elastase, barely detectable levels of pyoverdin and undetectable levels of the quorum sensing signal molecules N-3-oxododecanoly-L-homoserine lactone and N-butyryl homoserine lactone, but retained full twitching motility. We then used a mouse model of acute lung infection with P. aeruginosa to demonstrate that the lasIRrhlIR knockout strain showed equal persistence to wild type parental PAO1, induced equal or greater neutrophil infiltration to the lungs, and induced similar levels of expression of inflammatory cytokines in the lungs and similar antibody responses, both in terms of magnitude and isotype. Our results suggest, in contrast to previous reports, that lack of quorum sensing alone does not significantly affect the immunogenicity, infectiveness and persistence of P. aeruginosa in a mouse model of acute lung infection.  相似文献   

4.
5.
Bacteria inhabit a wide variety of environments in which fluid flow is present, including healthcare and food processing settings and the vasculature of animals and plants. The motility of bacteria on surfaces in the presence of flow has not been well characterized. Here we focus on Pseudomonas aeruginosa, an opportunistic human pathogen that thrives in flow conditions such as in catheters and respiratory tracts. We investigate the effects of flow on P. aeruginosa cells and describe a mechanism in which surface shear stress orients surface-attached P. aeruginosa cells along the flow direction, causing cells to migrate against the flow direction while pivoting in a zig-zag motion. This upstream movement is due to the retraction of type IV pili by the ATPase motors PilT and PilU and results from the effects of flow on the polar localization of type IV pili. This directed upstream motility could be beneficial in environments where flow is present, allowing bacteria to colonize environments that cannot be reached by other surface-attached bacteria.  相似文献   

6.
7.
8.
9.
10.
Pseudomonas aeruginosa uses type IV pili to colonize various materials and for surface-associated twitching motility. We previously identified five phylogenetically distinct alleles of pilA in P. aeruginosa, four of which occur in genetic cassettes with specific accessory genes (J. V. Kus, E. Tullis, D. G. Cvitkovitch, and L. L. Burrows, Microbiology 150:1315-1326, 2004). Each of the five pilin alleles, with and without its associated pilin accessory gene, was used to complement a group II PAO1 pilA mutant. Expression of group I or IV pilA genes restored twitching motility to the same extent as the PAO1 group II pilin. In contrast, poor twitching resulted from complementation with group III or group V pilA genes but increased significantly when the cognate tfpY or tfpZ accessory genes were cointroduced. The enhanced motility was linked to an increase in recoverable surface pili and not to alterations in total pilin pools. Expression of the group III or V pilins in a PAO1 pilA-pilT double mutant yielded large amounts of surface pili, regardless of the presence of the accessory genes. Therefore, poor piliation in the absence of the TfpY and TfpZ accessory proteins results from a net increase in PilT-mediated retraction. Similar phenotypes were observed for tfpY single and tfpY-pilT double knockout mutants of group III strain PA14. A PilAV-TfpY chimera produced few surface pili, showing that the accessory proteins are specific for their cognate pilin. The genetic linkage between specific pilin and accessory genes may be evolutionarily conserved because the accessory proteins increase pilus expression on the cell surface, thereby enhancing function.  相似文献   

11.
Triclosan is a broad-spectrum antimicrobial agent having low toxicity which facilitates its incorporation into numerous personal and health care products. Although triclosan acts against a wide range of gram-positive and gram-negative bacteria by affecting fatty acid biosynthesis, it is ineffective against the opportunistic pathogen Pseudomonas aeruginosa. Wild-type strain P. aeruginosa PAO1 was used as a model system to determine the effects of triclosan on fatty acid metabolism in resistant microorganisms. This was accomplished by cultivating P. aeruginosa PAO1 cultures in the presence of different concentrations of triclosan, monitoring growth rates turbidimetrically, and harvesting in stationary phase. Readily extractable lipids (RELs) were obtained from freeze-dried cells after washing and analyzed using gas chromatography coupled with mass spectrometry. Resultant data demonstrated that triclosan caused dose-dependent increases in the amounts of trans-C16:1 and trans-C18:1 fatty acids, with concomitant decreases in their respective cyclopropyl analogs. Triclosan did not affect the relative concentrations of saturated, cis unsaturated, or the overall ratios of combined C16 to C18 fatty acid species. The readily extractable lipid fractions contained triclosan proportional to triclosan concentrations in the growth media. The presence or absence of triclosan in either liquid or solid media did not affect the antimicrobial susceptibilities of P. aeruginosa PAO1 to a battery of unrelated antimicrobials. Triclosan decreased growth rate in a dose-dependant manner at soluble concentrations. Incorporation of triclosan into the REL fraction was accompanied by increased levels of trans unsaturated fatty acids, decreased levels of cyclopropyl fatty acids, and decrease in growth rate. These alterations may contribute to triclosan resistance in P. aeruginosa PAO1.  相似文献   

12.
A systematic genetic analysis was performed to identify the inner membrane proteins essential for type IV pilus (T4P) expression in Pseudomonas aeruginosa. By inactivating the retraction aspect of pilus function, genes essential for T4P assembly were discriminated. In contrast to previous studies in the T4P system of Neisseria spp., we found that components of the inner membrane subcomplex consisting of PilMNOP were not essential for surface pilus expression, whereas the highly conserved inner membrane protein PilC was essential. Here, we present data that PilC may coordinate the activity of cytoplasmic polymerization (PilB) and depolymerization (PilT) ATPases via their interactions with its two cytoplasmic domains. Using in vitro co-affinity purification, we show that PilB interacts with the N-terminal cytoplasmic domain of PilC. We hypothesized that PilT similarly interacts with the PilC C-terminal cytoplasmic domain. Overexpression of that domain in the wild-type protein reduced twitching motility by ∼50% compared with the vector control. Site-directed mutagenesis of conserved T4P-specific residues in the PilC C-terminal domain yielded mutant proteins that supported wild-type pilus assembly but had a reduced capacity to support twitching motility, suggesting impairment of putative PilC-PilT interactions. Taken together, our results show that PilC is an essential inner membrane component of the T4P system, controlling both pilus assembly and disassembly.  相似文献   

13.
Many bacterial pathogens, including Pseudomonas aeruginosa, use type IVa pili (T4aP) for attachment and twitching motility. T4aP are composed primarily of major pilin subunits, which are repeatedly assembled and disassembled to mediate function. A group of pilin-like proteins, the minor pilins FimU and PilVWXE, prime pilus assembly and are incorporated into the pilus. We showed previously that minor pilin PilE depends on the putative priming subcomplex PilVWX and the non-pilin protein PilY1 for incorporation into pili, and that with FimU, PilE may couple the priming subcomplex to the major pilin PilA, allowing for efficient pilus assembly. Here we provide further support for this model, showing interaction of PilE with other minor pilins and the major pilin. A 1.25 Å crystal structure of PilEΔ1–28 shows a typical type IV pilin fold, demonstrating how it may be incorporated into the pilus. Despite limited sequence identity, PilE is structurally similar to Neisseria meningitidis minor pilins PilXNm and PilVNm, recently suggested via characterization of mCherry fusions to modulate pilus assembly from within the periplasm. A P. aeruginosa PilE-mCherry fusion failed to complement twitching motility or piliation of a pilE mutant. However, in a retraction-deficient strain where surface piliation depends solely on PilE, the fusion construct restored some surface piliation. PilE-mCherry was present in sheared surface fractions, suggesting that it was incorporated into pili. Together, these data provide evidence that PilE, the sole P. aeruginosa equivalent of PilXNm and PilVNm, likely connects a priming subcomplex to the major pilin, promoting efficient assembly of T4aP.  相似文献   

14.
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap.  相似文献   

15.
Iron is an essential element for life but also serves as an environmental signal for biofilm development in the opportunistic human pathogen Pseudomonas aeruginosa. Under iron-limiting conditions, P. aeruginosa displays enhanced twitching motility and forms flat unstructured biofilms. In this study, we present evidence suggesting that iron-regulated production of the biosurfactant rhamnolipid is important to facilitate the formation of flat unstructured biofilms. We show that under iron limitation the timing of rhamnolipid expression is shifted to the initial stages of biofilm formation (versus later in biofilm development under iron-replete conditions) and results in increased bacterial surface motility. In support of this observation, an rhlAB mutant defective in biosurfactant production showed less surface motility under iron-restricted conditions and developed structured biofilms similar to those developed by the wild type under iron-replete conditions. These results highlight the importance of biosurfactant production in determining the mature structure of P. aeruginosa biofilms under iron-limiting conditions.The biofilm mode of bacterial growth is a surface-attached state in which cells are closely packed and encased in an extracellular polymeric matrix (10, 27). Biofilms are abundant in nature and are of clinical, environmental, and industrial importance. Biofilm development is known to follow a series of complex but discrete and tightly regulated steps (18, 27), including (i) microbial attachment to the surface, (ii) growth and aggregation of cells into microcolonies, (iii) maturation, and (iv) dissemination of progeny cells that can colonize new niches. Over the last decade, several key processes important for biofilm formation have been identified, including quorum sensing (12) and surface motility (28).One of the best-studied model organisms for biofilm development is the bacterium Pseudomonas aeruginosa (10), a notorious opportunistic pathogen which causes many types of infections, including biofilm-associated chronic lung infections in individuals with cystic fibrosis (10, 24, 41). Like most organisms, P. aeruginosa requires iron for growth, as iron serves as a cofactor for enzymes that are involved in many basic cellular functions and metabolic pathways. Recent work has shown that at iron concentrations that are not limiting for growth, this metal serves as a signal for biofilm development (40). Iron limitation imposed, for example, by the mammalian iron chelator lactoferrin blocks the ability of P. aeruginosa biofilms to mature from thin layers of cells attached to a surface into large multicellular mushroom-like biofilm structures (40). By chelating iron, lactoferrin induces twitching motility (a specialized form of surface motility), which causes the cells to move across the surface instead of settling down to form structured communities (39, 40). In a recent paper, Berlutti et al. (5) provided further support for the role of iron in cell aggregation and biofilm formation. They reported that in the liquid phase, iron limitation induced motility and transition to the free-living (i.e., planktonic) mode of growth, while increased iron concentrations facilitated cell aggregation and biofilm formation. We recently demonstrated that iron limitation-induced twitching motility is regulated by quorum sensing (31). Quorum sensing allows bacteria to sense and respond to their population density via the production of small diffusible signal molecules. In P. aeruginosa and many other Gram-negative bacteria, these signal molecules are N-acyl homoserine lactones (acyl-HSLs), which have specific receptors (R proteins) (16, 30). P. aeruginosa possesses two acyl-HSL quorum-sensing systems, one for production of and response to N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL) (LasR-LasI) and the other for production of and response to N-butanoyl homoserine lactone (C4-HSL) (RhlR-RhlI) (35, 37). We have reported that an rhlI mutant unable to synthesize the C4-HSL signal was impaired in iron limitation-induced twitching motility and formed structured biofilms under iron-limiting conditions (31).The correlation between twitching motility, the RhlR-RhlI quorum-sensing system, and iron-regulated biofilm formation led us to hypothesize that rhamnolipids are involved in mediating this process. Rhamnolipids are surface-active amphipathic molecules composed of a hydrophobic lipid and a hydrophilic sugar moiety and compose the main constituents of the biosurfactant produced by P. aeruginosa (reviewed in reference 42). The biosurfactant is required for a form of surface motility called swarming, where it functions as a wetting agent and reduces surface tension (8, 14). Furthermore, elements constituting the biosurfactant were recently shown to modulate the swarming behavior by acting as chemotactic-like stimuli (43). Rhamnolipids are also important in maintaining biofilm structure and inducing biofilm dispersion (6, 11, 29). Their synthesis requires the expression of the rhlAB operon, which is regulated by the RhlR-RhlI quorum-sensing system (14, 25, 32) and is also induced under iron-limiting conditions (14).In this study, we test this hypothesis and demonstrate that rhamnolipid production is induced under iron-limiting conditions and that this promotes twitching motility. We found that increased expression of rhamnolipid synthesis genes during early biofilm development under iron-limiting conditions induces surface motility and results in formation of a thin flat biofilm. Furthermore, a mutant that is incapable of synthesizing rhamnolipids does not display twitching motility under iron-limiting conditions and thus forms structured biofilms under these conditions. These results highlight the importance of biosurfactant production in determining the architecture of mature P. aeruginosa biofilms under iron-limiting conditions.  相似文献   

16.
Type IV pili (T4P) are retractile appendages that contribute to the virulence of bacterial pathogens. PilF is a Pseudomonas aeruginosa lipoprotein that is essential for T4P biogenesis. Phenotypic characterization of a pilF mutant confirmed that T4P-mediated functions are abrogated: T4P were no longer present on the cell surface, twitching motility was abolished, and the mutant was resistant to infection by T4P retraction-dependent bacteriophage. The results of cellular fractionation studies indicated that PilF is the outer membrane pilotin required for the localization and multimerization of the secretin, PilQ. Mutation of the putative PilF lipidation site untethered the protein from the outer membrane, causing secretin assembly in both inner and outer membranes. T4P-mediated twitching motility and bacteriophage susceptibility were moderately decreased in the lipidation site mutant, while cell surface piliation was substantially reduced. The tethering of PilF to the outer membrane promotes the correct localization of PilQ and appears to be required for the formation of stable T4P. Our 2.0-Å structure of PilF revealed a superhelical arrangement of six tetratricopeptide protein-protein interaction motifs that may mediate the contacts with PilQ during secretin assembly. An alignment of pseudomonad PilF sequences revealed three highly conserved surfaces that may be involved in PilF function.  相似文献   

17.
Many human diseases, including cystic fibrosis lung infections, are caused or exacerbated by bacterial biofilms. Specialized modes of motility, including swarming and twitching, allow gram-negative bacteria to spread across surfaces and form biofilms. Compounds that inhibit these motilities could slow the spread of biofilms, thereby allowing antibiotics to work better. We previously demonstrated that a set of plant-derived triterpenes, including oleanolic acid and ursolic acid, inhibit formation of Escherichia coli and Pseudomonas aeruginosa biofilms, and alter expression of genes involved in chemotaxis and motility. In the present study, we have prepared a series of analogs of oleanolic acid. The analogs were evaluated against clinical isolates of E. coli and P. aeruginosa in biofilm formation assays and swarming assays. From these analogs, compound 9 was selected as a lead compound for further development. Compound 9 inhibits E. coli biofilm formation at 4 µg/mL; it also inhibits swarming at ≤1 µg/mL across multiple clinical isolates of P. aeruginosa, E. coli, Burkholderia cepacia, and Salmonella enterica, and at <0.5 µg/mL against multiple agricultural strains. Compound 9 also potentiates the activity of the antibiotics tobramycin and colistin against swarming P. aeruginosa; this is notable, as tobramycin and colistin are inhaled antibiotics commonly used to treat P. aeruginosa lung infections in people with cystic fibrosis. qPCR experiments suggested that 9 alters expression of genes involved in regulating Type IV pili; western blots confirmed that expression of Type IV pili components PilA and PilY1 decreases in P. aeruginosa in the presence of 9.  相似文献   

18.
Cyclic di-GMP is a conserved signaling molecule regulating the transitions between motile and sessile modes of growth in a variety of bacterial species. Recent evidence suggests that Pseudomonas species harbor separate intracellular pools of c-di-GMP to control different phenotypic outputs associated with motility, attachment, and biofilm formation, with multiple diguanylate cyclases (DGCs) playing distinct roles in these processes, yet little is known about the potential conservation of functional DGCs across Pseudomonas species. In the present study, we demonstrate that the P. aeruginosa homolog of the P. fluorescens DGC GcbA involved in promoting biofilm formation via regulation of swimming motility likewise synthesizes c-di-GMP to regulate surface attachment via modulation of motility, however, without affecting subsequent biofilm formation. P. aeruginosa GcbA was found to regulate flagellum-driven motility by suppressing flagellar reversal rates in a manner independent of viscosity, surface hardness, and polysaccharide production. P. fluorescens GcbA was found to be functional in P. aeruginosa and was capable of restoring phenotypes associated with inactivation of gcbA in P. aeruginosa to wild-type levels. Motility and attachment of a gcbA mutant strain could be restored to wild-type levels via overexpression of the small regulatory RNA RsmZ. Furthermore, epistasis analysis revealed that while both contribute to the regulation of initial surface attachment and flagellum-driven motility, GcbA and the phosphodiesterase DipA act within different signaling networks to regulate these processes. Our findings expand the complexity of c-di-GMP signaling in the regulation of the motile-sessile switch by providing yet another potential link to the Gac/Rsm network and suggesting that distinct c-di-GMP-modulating signaling pathways can regulate a single phenotypic output.  相似文献   

19.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   

20.
Type 4 fimbriae are produced by a variety of pathogens, in which they appear to function in adhesion to epithelial cells, and in a form of surface translocation called twitching motility. Using transposon mutagenesis of Pseudomonas aeruginosa, we have identified a new locus required for fimbrial assembly. This locus contains the gene pilQ which encodes a 77 kDa protein with an N-terminal hydro-phobic signal sequence characteristic of secretory proteins, pilQ mutants lack the spreading colony morphology characteristic of twitching motility, are devoid of fimbriae, and are resistant to the fimbrial-specific bacteriophage PO4. The pilQ gene was mapped to Spel fragment 2, which is located at 0–5 minutes on the P. aeruginosa PAO1 chromosome, and thus it is not closely linked to the previously characterized pilA-D, pilS,R or pilT genes. The pilQ region also contains ponA, aroK and aroB-like genes in an organization very similar to that of corresponding genes in Escherichia coli and Haemophilus influenzae. The predicted amino acid sequence of PilQ shows homology to the PulD protein of Kleb-siella oxytoca and related outer membrane proteins which have been found in association with diverse functions in other species including protein secretion, DNA uptake and assembly of filamentous phage. PilQ had the highest overall homology to an outer membrane antigen from Neisseria gonorrhoeae, encoded by omc, that may fulfil the same role in type 4 fimbrial assembly in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号