首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA polymerase II from human placenta was affinity labelled in crude preparation using two-step technique, which includes treatment of the enzyme with an aldehyde-containing reactive analogue of ATP, ADP or AMP in the presence of poly[d(A-T)] followed (after borohydride reduction) by the elongation of the attached label with [alpha-32P]UTP. A polypeptide of the molecular mass ca. 140 kDa proved to be the labelling target. No labelling was observed in the absence of poly[d(A-T)] or the reagent or in the presence of alpha-amanitin. All the results suggest the attachment of the affinity reagents to the second-largest subunit of the human RNA polymerase II, which therefore takes part in the initiation substrate's binding.  相似文献   

2.
Substrate properties of several dTTP analogues bearing a photoreactive 2-nitro-5-azidobenzoyl (NAB) group attached at position 5 of uracil through linkers of various lengths, dTTP-NAB-x-dUTP (where x = 2, 4, 7-13 is the number of atoms in the linker), were studied. All the analogues are substrates for thermostable Thermus thermophilus B35 DNA polymerase in the elongation reaction of the 5'-32P-labeled primer-template complex. The kinetic parameters of some of the analogues were determined and compared with those of natural dTTP. It was shown that an increase in the linker length results in a higher efficiency of the analogue. The incorporation of NAB-x-dUMP residues into the 3'-primer end did not impede a further elongation of the chain in the presence of natural dNTP.  相似文献   

3.
Substrate properties of several dTTP analogues bearing a photoreactive 2-nitro-5-azidobenzoyl (NAB) group attached at position 5 of uracil through linkers of various lengths, dTTP–NAB-x-dUTP (where x = 2, 4, 7–13 is the number of atoms in the linker), were studied. All the analogues are substrates for thermostable Thermus thermophilus B35 DNA polymerase in the elongation reaction of the 5-32P-labeled primer–template complex. The kinetic parameters of some of the analogues were determined and compared with those of natural dTTP. It was shown that an increase in the linker length results in a higher efficiency of the analogue. The incorporation of NAB-x-dUP residues into the 3 primer end did not impede further elongation of the chain in the presence of natural dNTP.  相似文献   

4.
A binary system of photoaffinity reagents was proposed earlier for highly efficient labeling of DNA polymerases by 5"-[32P]DNA primers. In the present study we demonstrate the feasibility of this approach to increase the efficiency of DNA polymerase labeling. A photoactive 2,3,5,6-tetrafluoro-4-azidobenzoyl (FAB) group was incorporated at the 3"-end of 5"-[32P]DNA primers synthesized by DNA polymerase or Tte in the presence of one of the dTTP analogs—FAB-4-dUTP, FAB-9-dUTP, or FAB-4-ddUTP. The reaction mixture was irradiated by light with wavelength of 334-365 nm (direct labeling) or 365-450 nm in the presence of photosensitizer, one of dTTP analogs containing a pyrene moiety, Pyr-6-dUTP or Pyr-8-dUTP. In the case of the binary system of photoaffinity reagents, a FAB group is activated by energy transfer from sensitizer localized in the dNTP-binding site of DNA polymerase in the triple complex, comprised by reagent, DNA polymerase, and Pyr-6(8)-dUTP. Direct activation of the FAB group under these conditions is negligible. The most efficient photolabeling of DNA polymerases was observed with a primer containing a FAB-4-dUMP group at the 3"-end, and Pyr-6-dUTP as a photosensitizer. Using 10-fold molar excess of photoreagent to DNA polymerase , the labeling efficiency was shown to achieve 60%, which is 2-fold higher than the efficiency of the direct DNA polymerase labeling under harsher conditions (334-365 nm).  相似文献   

5.
T7 phage RNA polymerase was affinity labelled in the presence of its promoter by treatment with an ATP gamma-derivative (a phosphoamide obtained from 4-(N-chloroethyl, N-methyl)aminobenzylamine, or one of esters obtained from 2-methoxy-4-formylphenol, 4-formylphenol, and 2[N-(4-formylphenyl), N-methyl]-aminoethanol) followed by addition of [alpha-32P]GTP. The most efficient labelling took place with the alkylating phosphoamide reagent.  相似文献   

6.
The nucleotide sequences of three thermostable DNA polymerase (Taq, Tth, and Tfl) genes were analyzed and high conserved regions typical for this polymerase family were identified. Using primers for one of the conserved regions, the genomic DNA fragment of T. thermophilus B35 strain was amplified. The resulting fragment was cloned into a plasmid and used as a hybridization probe with digests of T. thermophilus B35 DNA cleaved by different restriction endonucleases. A restriction DNA fragment carrying the full-length Tte polymerase gene was found, cloned, and sequenced. The primary structures of the Tte and Tth DNA polymerase genes were analyzed. The Tte-pol gene was recloned into an expression vector and recombinant protein was purified to homogeneity. The properties of Tte-pol in the polymerase chain reaction were investigated.  相似文献   

7.
8.
The interaction of DNA polymerase from Thermus thermophilus B35 (Tte-pol) with deoxynucleoside triphosphates in the presence of different divalent metal ions has been studied. DNA synthesis and competitive inhibition of the polymerase reaction by non-complementary dNTPs are described with corresponding kinetic schemes. The co-factor properties of some metals (Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Ca2+, Cd2+, and Zn2+) were investigated, and their activating concentration ranges were determined. It was found that kcat values are significantly decreased and Km values slowly decrease when Mn2+ displaces Mg2+. The value of Kd for DNA template-primer is Me2+-independent, whereas Kd values for non-complementary dNTPs decrease in the presence of Mn2+. Tte-pol processivity but not DNA synthesis efficiency is Me2+-type independent.  相似文献   

9.
DNA-dependent RNA polymerase B (II) from wheat germ was modified by incubation with 4-[N-(β-hydroxyethyl)-N-methyl]benzaldehyde esters of AMP, ADP or ATP, followed by reduction with NaBH4. Reaction of the modified enzyme with [-32P]UTP in the presence of various DNA templates led to a highly selective affinity labelling of the subunit with Mr 140000 by covalently linked ApU. Labelling was inhibited by 1μg/ml -amanitin.  相似文献   

10.
The complex [promoter A2 X E. coli RNA polymerase] was treated with phosphoamides, derivatives of 4-[N-methyl, N-(2-chloroethyl)]-aminobenzylamine and guanosine-5'-mono-, di-, and triphosphates with the alkylating group attached to the terminal phosphates. After this, [alpha-32P]CTP was added. Residues of the affinity reagents bound covalently at the first stage were elongated by radioactive -pC residues due to the catalytic action of the active centre of RNA polymerase. Affinity labelled were beta-and sigma-subunits of the enzyme, and the promoter. The affinity label was localized on -pGpC residues. A guanine residue was alkylated in the promoter as suggested by radioactivity elimination kinetics. As the data obtained and the previously known length of the reagent (maximum distance between the alpha-phosphorus atom of the reagent and the point of alkylation is less than 0.6 nm) indicate, there is a direct rather than protein-mediated contact between the template and the substrate within the complex [promoter X RNA polymerase].  相似文献   

11.
The thermophilic bacterium Thermus thermophilus HB8 is able to utilize lactose from whey-based media for the biosynthesis of polyhydroxyalkanoates (PHAs) under nitrogen limitation. T. thermophilus can utilize both, glucose and galactose, the products of lactose hydrolysis. When T. thermophilus HB8 was grown in culture media containing 24% (v/v) whey, PHA was accumulated up to 35% (w/w) of its biomass after 24 h of cultivation. The effect of initial phosphate concentration on the PHA production was also investigated. Using an initial phosphate concentration of 50 mM the PHA accumulation was enhanced. Analysis of the produced PHA from T. thermophilous HB8 grown in whey-based media revealed a novel heteropolymer consisting of the short chain length 3-hydroxyvalerate (3HV; 38 mol%) and the medium chain length, 3-hydroxyheptanoate (3HHp; 9.89 mol%), 3-hydroxynanoate (3HN; 16.59 mol%) and 3-hydroxyundecanoate (3HU; 35.42 mol%). Despite the low molecular weight of the produced PHA by T. thermophilus, whey could be an excellent substrate for the production of heteropolymers with unique properties.  相似文献   

12.
Short repetitive DNA sequences are believed to be one of the primordial genetic elements that served as a source of complex large DNA found in the genome of modern organisms. However, the mechanism of its expansion (increase in repeat number) during the course of evolution is unclear. We demonstrate that the DNA polymerase of the hyperthermophilic bacterium Thermus thermophilus can elongate oligoDNA with several tandem repeats to very long DNA in vitro. For instance, 48mer repetitive oligoDNA (TACATGTA)6, which has 25% GC content and a palindromic sequence, can be elongated up to ~10 000 bases by DNA polymerase at 74°C without template DNA. OligoDNA having a different GC content or a quasi-palindromic sequence can also be elongated, but less efficiently. A spectroscopic thermal melting experiment with the oligoDNA showed that its hairpin–coil transition temperature was very close to the elongation reaction temperature (74°C), but was much higher than the temperature at which duplex oligoDNA can exist stably. Taken together, we conclude that repetitive oligoDNA with a palindromic or quasi-palindromic sequence is elongated extensively by a hyperthermophilic DNA polymerase through hairpin–coil transitions. We propose that such an elongation mechanism might have been a driving force to expand primordial short DNA.  相似文献   

13.
Membrane-associated phosphoinositidase C activity has been identified in Dictyostelium discoideum using phosphatidylinositol 4,5-bisphosphate as exogenous substrate. Maximal activity was observed with 0.4 mM phosphatidylinositol 4,5-bisphosphate at pH 7.0. The enzyme was stimulated

by micromolar concentrations of free calcium with maximal activity at 100 μM.  相似文献   


14.
The hybrid protein consisting of Tte DNA polymerase fragment and mutant Taq DNA polymerase (F667Y) fragment in the ratio 20 : 1 was constructed. Affinity of the modified enzyme (substitutions F669Y, V667I, and S692Q) to ddNTP was two orders higher than that of the wild type enzyme. The modified enzyme was used for sequencing DNA fragment with total deoxyguanosine and deoxycytidine content of 68%. In the polymerase chain reaction, the modified enzyme exhibits properties typical of the wild type Tte DNA polymerase.  相似文献   

15.
16.
Phosphofructokinase (PFKase) was purified from an extreme thermophile. Thermus thermophilus. Allosteric natures of T. thermophilus PFKase is similar to those of Bacillus stearothermophilus PFKase, that is, hyperbolic plots of the activity versus concentration of fructose 6-phosphate (F6P) were changed into a sigmoidal shape by the addition of phosphoenolpyruvate (PEP), while further addition of ADP caused it to revert to a hyperbolic shape. The native T. thermophilus PFKase has an Mr of 148,000 consisting of four 36,500 subunits. However, it exists as a two-subunit form of Mr 74,000 in the presence of PEP. The two-subunit form was catalytically inactive. The four-subunit enzyme was regenerated by addition of either F6P or Mg.ADP, or by removal of PEP from the solution. This reversible dissociation was observed within a wide range of pH (6.5 to 8.4) and temperature (4 degrees C to 65 degrees C). Thus, unlike PFKase from other sources, the allosteric kinetics of T. thermophilus PFKase can be explained well, at least qualitatively, by the dynamic equilibrium between the active four-subunit form and inactive two-subunit form that is modulated by PEP, F6P and Mg.ADP. Parallel suppression of the PEP-induced conversion in molecular form and kinetics by high concentrations of sulfate and phosphate supports the above explanation. Also, the observation that the degree of PEP inhibition was dependent on the protein concentration of the PFKase in the assay solution is consistent with the presence of this equilibrium.  相似文献   

17.
The hydrophilic domain (peripheral arm) of the proton-translocating NADH:quinone oxidoreductase (complex I) from the thermophilic organism Thermus thermophilus HB8 has been purified and characterized. The subcomplex is stable in sodium dodecyl sulfate up to 80 degrees C. Of nine iron-sulfur clusters, four to five (one or two binuclear and three tetranuclear) could be detected by EPR in the NADH-reduced enzyme. The preparation consists of eight different polypeptides. Seven of them have been positively identified by peptide mass mapping and N-terminal sequencing as known hydrophilic subunits of T. thermophilus complex I. The eighth polypeptide copurified with the subcomplex at all stages, is strongly associated with the other subunits, and is present in crystals of the subcomplex, used for X-ray data collection. Therefore, it has been identified as a novel complex I subunit and named Nqo15. It is encoded in a locus separate from the nqo operon, containing the 14 other known complex I genes. ORFs encoding Nqo15 homologues are present in the genomes of the closest relatives of T. thermophilus. Our data show that, contrary to previous assumptions, bacterial complex I can contain proteins in addition to a "core" complement of 14 subunits.  相似文献   

18.
The isoprenoid quinones exist widely among prokaryotes and eukaryotes. They play essential roles in respiratory electron transport and in controlling oxidative stress and gene regulation. In the isoprenoid quinone biosynthetic pathway, polyprenyl pyrophosphates are used as isoprenoid side-chain precursors. Here we report the crystal structure of a novel polyprenyl pyrophosphate binding protein, TT1927b, from Thermus thermophilus HB8, complexed with its ligand. This protein belongs to the YceI-like family in the Pfam database, and its sequence homologs are present in a broad range of bacteria and archaea. The structure consists of an extended, eight-stranded, antiparallel beta-barrel. In the hydrophobic pore of the barrel, the protein binds the polyisoprenoid chain by hydrophobic interactions. Its overall structure resembles the lipocalin fold, but there is no sequence homology between TT1927b and the lipocalin family of proteins.  相似文献   

19.
The molecular mechanisms that govern cell movement are the subject of intense study, as they impact biologically and medically important processes such as leukocyte chemotaxis and angiogenesis, among others. We demonstrate that leukocyte chemotaxis is prevented by the macrolide immunosuppressant rapamycin, a specific inhibitor of the mammalian target of rapamycin (mTOR)/ribosomal p70-S6 kinase (p70S6K) pathway. Both neutrophil chemotaxis and chemokinesis elicited by granulocyte-macrophage colony-stimulating factor (GM-CSF) were strongly inhibited by rapamycin with an IC50 of 0.3 nM. Inhibition, although at a higher dose, was also observed when the chemoattractant was interleukin-8. As for the mechanism, rapamycin targeted the increase of phosphorylation of p70S6K due to GM-CSF treatment, as demonstrated with specific anti-p70S6K immunoprecipitation and subsequent immunoblotting with anti-T421/S424 antibodies. Rapamycin also inhibited GM-CSF-induced actin polymerization, a hallmark of leukocyte migration. The specificity of the effect of rapamycin was confirmed by the use of the structural analog FK506, which did not have a significant effect on chemotaxis but effectively rescued rapamycin-induced p70S6K inhibition. This was expected from a competitive effect of both molecules on FK506-binding proteins (FKBP). Additionally, GM-CSF-induced chemotaxis was completely (>90%) blocked by a combination of rapamycin and the MAPK kinase (MEK) inhibitor PD-98059. In summary, the results presented here indicate for the first time that rapamycin, at sub-nanomolar concentrations, inhibits GM-CSF-induced chemotaxis and chemokinesis. This serves to underscore the relevance of the mTOR/S6K pathway in neutrophil migration.  相似文献   

20.
Vacuolar-type H(+)-ATPase (V-ATPase) catalyzes ATP synthesis and hydrolysis coupled with proton translocation across membranes via a rotary motor mechanism. Here we report biochemical and biophysical catalytic properties of V-ATPase from Thermus thermophilus. ATP hydrolysis of V-ATPase was severely inhibited by entrapment of Mg-ADP in the catalytic site. In contrast, the enzyme was very active for ATP synthesis (approximately 70 s(-1)) with the K(m) values for ADP and phosphate being 4.7 +/- 0.5 and 460 +/- 30 microm, respectively. Single molecule observation showed V-ATPase rotated in a 120 degrees stepwise manner, and analysis of dwelling time allowed the binding rate constant k(on) for ATP to be estimated ( approximately 1.1 x 10(6) m(-1) s(-1)), which was much lower than the k(on) (= V(max)/K(m)) for ADP ( approximately 1.4 x 10(7) m(-1) s(-1)). The slower k(on)(ATP) than k(on)(ADP) and strong Mg-ADP inhibition may contribute to prevent wasteful consumption of ATP under in vivo conditions when the proton motive force collapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号