首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A transducer format that replaces the electrode of an acoustic resonator with a planar spiral coil is used to extract multifrequency spectral information from adsorbed protein films. Both amorphous silica and crystalline piezoelectric resonators are driven to resonance by forces induced across an air gap by magnetic direct generation and piezoelectric excitation induced by the electromagnetic field of the coil. Inspection of the harmonic frequencies between 6 MHz and 0.6 GHz indicates that the response of these two resonator types is described by different families of shear acoustic standing waves, with similar acoustic features to the quartz crystal microbalance. Exposure of the devices to protein solutions results in reproducible shifts of their harmonic frequencies, up to a maximum of 15 kHz and increasing linearly with frequency and operating mode. The gradient, determined from the ratio of the frequency change to the operating frequency was determined as 21.5 x 10(-6) for the quartz device and 60.9 x 10(-6) for the silica device. Consistency with the Sauerbrey equation for the piezoelectric linear shear mode was comparable at a predicted value of 22.5 x 10(-6), but not for the radial shear mode of the silica device at 12.7 x 10(-6). Opportunities resulting from the wide bandwidth of the planar coil excitation and choice of acoustic mode are discussed with respect to acoustic fingerprinting of adsorbed proteins.  相似文献   

2.

Background  

Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance) by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV) type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor.  相似文献   

3.
Surface acoustic wave sensors operating in liquid generally cause problems resulting from wire bonding. The authors present an approach for a biosensor where the need for bonding wires is eliminated by utilizing inductive coupling of the sensor device to the RF circuitry. Protection of the electrodes from the liquid is achieved by coating the device surface with a SiO2 layer, resulting in a simplified handling of the devices. The first measurements with a sensor operating at 420 MHz are presented, demonstrating the potential of this operating principle for biosensing.  相似文献   

4.
The aim of this work is to study the effect of operating frequency, piezoelectric substrate and waveguide layer thickness on the sensitivity of the acoustic waveguide sensor during the specific binding of an antibody by a protein. Shear horizontal (SH) wave devices consisting of (a) a LiTaO3 substrate operating at 104 MHz, (b) a quartz substrate operating at 108 MHz and (c) a quartz substrate operating at 155 MHz were coated with a photoresist polymer layer in order to produce acoustic waveguide devices supporting a Love wave. The effect of the thickness of the polymer layer on the Love wave was assessed by measuring the amplitude and phase of the wave before and after coating. The sensitivity of the above three biosensors was compared during the detection of the specific binding of different concentrations of Immunoglobulin G in the range of 0.7-667 nM to a protein A modified surface. Results indicate that the thickness of the polymer guiding layer is critical for obtaining the maximum sensitivity for a given geometry but a trade-off has to be made between the theoretically determined optimum thickness for waveguiding and the device insertion loss. It was also found that increasing the frequency of operation results in a further increase in the device sensitivity to protein detection.  相似文献   

5.
A novel high sensitivity ZnO/SiO(2)/Si Love mode surface acoustic wave (SAW) biosensor for the detection of interleukin-6 (IL-6), is reported. The biosensors operating at 747.7MHz and 1.586GHz were functionalized by immobilizing the monoclonal IL-6 antibody onto the ZnO biosensor surface both through direct surface adsorption and through covalent binding on gluteraldehyde. The morphology of the IL-6 antibody-protein complex was studied using scanning electron microscopy (SEM), and the mass of the IL-6 protein immobilized on the surface was measured from the frequency shift of the SAW resonator biosensor. The biosensor was shown to have extended linearity, which was observed to improve with higher sensor frequency and for IL-6 immobilization through the monoclonal antibody. Preliminary results of biosensor measurements of low levels of IL-6 in normal human serum are reported. The biosensor can be fully integrated with CMOS Si chips and developed as a portable real time detection system for the interleukin family of proteins in human serum.  相似文献   

6.
光纤倏逝波生物传感器及其应用   总被引:2,自引:0,他引:2  
介绍光纤倏逝波生物传感器的基本原理、常用试验方法、基本仪器构建及应用进展。光纤倏逝波生物传感器是基于光波在光纤内以全反射方式传输时产生倏逝波的原理,以生物分子作为敏感元件进行检测的一类新兴传感器。光纤倏逝波生物传感器有望应用于环境监控、食品卫生监控、临床疾病监测、DNA检测和生物战剂检测。  相似文献   

7.
The kinetics of binding of short Tat peptides and an aminoglycoside molecule to the human immunodeficiency virus-type 1(HIV-1) TAR RNA and to a bulge mutant analogue (MTAR) is studied in a biosensor format by monitoring the time course of the response in a series resonance frequency, using an acoustic wave biosensor. Association and dissociation rate constants are evaluated by fitting the experimental data to a simple 1:1 (Langmuir) model. Kinetic rate and equilibrium dissociation constants show that MTAR-peptide complexes are subject to a higher dissociation rate and are less stable compared to the corresponding TAR-peptide complexes. In addition, longer peptides display enhanced discrimination ability than a shorter peptide according to the equilibrium dissociation constants evaluated using this technique. K(D) values for TAR-Tat vs. MTAR-Tat complexes are 2.6 vs. 3.8 microM for Tat-12, 0.87 vs. 4.3 microM for Tat-18 and 0.93 vs. 1.6 microM for Tat-20. The equilibrium dissociation constant for TAR-neomycin complex is 12.4 microM and it is comparable to the values obtained from non-biosensor type assays. These findings are in parallel with those cited in the literature and the results from this study underline the potential of the acoustic wave sensor for detailed biophysical analysis of nucleic acid-ligand binding.  相似文献   

8.
Livshits MS 《Biofizika》1998,43(6):1071-1075
A hypothesis of acoustic receptive fields is studied, which is based on the fact that the cochlea of the internal ear is a wave guide with traveling waves and the resonance in the critical layer. When a harmonic sound influences the ear, the traveling wave reaches the critical layer for the corresponding frequency and generates there a train of decaying waves about 25 periods in duration, which form a steep slope of the envelope. The funnel-shaped convergence of all neurones innervating the acoustic receptors of the Corti organ along the slope of the envelope gives rise to acoustic receptive fields. The hypothesis is consistent with some other experimental data. Such an acoustic receptive field makes it possible to use the whole train of waves in the critical layer to measure the frequency of the acting sinusoidal sound with the greatest possible accuracy. Similarly, a high accuracy of recognition of short-time sound pulses is provided, which could not be explained earlier.  相似文献   

9.
Among the methods for the determination of mechanical properties of living cells acoustic microscopy provides some extraordinary advantages. It is relatively fast, of excellent spatial resolution and of minimal invasiveness. Sound velocity is a measure of the stiffness or Young's modulus of the cell. Attenuation of cytoplasm is a measure of supramolecular interactions. These parameters are of crucial interest for studies of cell motility, volume regulations and to establish the functional role of the various elements of the cytoskeleton. Using a phase and amplitude sensitive modulation of a scanning acoustic microscope (Hillman et al., 1994, J. Alloys Compounds. 211/212:625-627) longitudinal wave speed, attenuation and thickness profile of a biological cell are obtained from the voltage versus frequency or V(f) curves. A series of pictures, for instance in the frequency range 980-1100 MHz with an increment of 20 MHz, allows the experimental generation of V(f) curves for each pixel while keeping the lens-specimen distance unchanged. Both amplitude and phase values of the V(f) curves are used for obtaining the cell properties and the cell thickness profile. The theoretical analysis shows that the thin liquid layer, between the cell and the substrate, has a strong influence on the reflection coefficient and should not be ignored during the analysis. Cell properties, cell profile and the thickness of the thin liquid layer are obtained from the V(f) curves by the simplex inversion algorithm. The main advantages of this new method are that imaging can be done near the focal plane, therefore an optimal signal to noise ratio is achieved, no interference with Rayleigh waves occurs, and the method requires only an approximate estimate of the material properties of the solid substratum where the cells are growing on.  相似文献   

10.
Most gravimetric biosensors use thin piezoelectric quartz crystals, either as resonating crystals (quartz crystal microbalance, QCM), or as bulk/surface acoustic wave (SAW) devices. In the majority of these the mass response is inversely proportional to the crystal thickness which, at a limit of about 150 microns, gives inadequate sensitivity. A new system is described in which acoustic waves are launched in very thin (10 microns) tensioned polymer films to produce an oscillatory device. A theoretical equation for this system is almost identical to the well-known Sauerbrey equation used in the QCM method. Because the polymer films are so thin, a 30-fold increase in sensitivity is predicted and verified by adding known surface masses. Temperature sensitivity is a problem so a separate control sensor and careful temperature regulation are necessary. Preliminary results showing the real time binding of protein (IgG), a step towards immunosensor development, and the use of mass enhancing particles are presented. Inexpensive materials are used so disposable gravimetric biosensors may become feasible.  相似文献   

11.
A resonance acoustic microbalance with a naked-embedded quartz (RAMNE-Q) is realized by a microfabrication method, aiming at broader applications of quartz-crystal microbalance (QCM) biosensors. The RAMNE-Q biosensor consists of three layers; a silicon layer with an engraved microchannel and sandwiching glass layers. The naked AT-cut quartz resonator of 9.3 or 28.5 μm thick is located in the microchannel and supported by the silicon micropillars and semicircular walls without fixing, and it is encapsulated by the rigid body. Cupper antennas are used for generating and receiving electromagnetic fields to excite and detect the shear vibration of the quartz oscillator during the solution flow, thereby achieving the noncontact measurement of the resonance frequency. Because of the isolated resonator, the Q factor is high enough (about 1500 at 170-180 MHz) even in the flowing solution. We succeeded in detecting 1 ng/ml human immunoglobulin G in phosphate-buffered-saline solution via Staphylococcus aureus protein A immobilized nonspecifically on the quartz surfaces, demonstrating the high sensitivity and high signal-to-noise ratio of the RAMNE-Q biosensor. It does not require electrodes and is a replacement-free biosensor, and its reusability is confirmed.  相似文献   

12.
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5–20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.  相似文献   

13.
A thickness shear-mode acoustic wave device, operated in a flow-through format, was used to detect the binding of ions or peptides to surface-attached calmodulin. On-line surface attachment of the protein was achieved by immobilisation of the biotinylated molecule via a neutravidin-biotin linkage onto the surface of the gold electrode of the detector. The interaction between calmodulin, and calcium and magnesium ions induced an increase in resonant frequency and a decrease in motional resistance, which were reversible on washing with buffer. Interestingly, the changes in resonant frequency and motional resistance induced by the binding were opposite to the normal operation of the detector. The response was interpreted as a decrease in surface coupling (partial slip at the liquid/solid interface) instigated by exposure of hydrophobic domains on the protein, and an increase in the thickness, and hence effective wavelength, of the acoustic device, corresponding to an increase in the length of calmodulin by 1.5 A. This result is consistent with the literature value of 4 A. In addition, the interaction of the protein with peptide together with calcium ions was detected successfully, despite the relatively low molecular mass of the 2-kDa peptide. These results confirm the potential of acoustic wave physics for the detection of changes in the conformational chemistry of monolayer of biochemical macromolecules at the solid/liquid interface.  相似文献   

14.
In this work, we describe a novel pulse mode shear horizontal-surface acoustic wave (SH-SAW) polymer coated biosensor that monitors rapid changes in both amplitude and phase. The SH-SAW sensors were fabricated on 36 degrees rotated Y-cut X propagating lithium tantalate (36 YX.LT). The sensitivity of the device to both mass loading and visco-elastic effects may be increased by using a thin guiding layer of cross-linked polymer. Two acoustic modes are excited by the electrodes in this crystalline direction. Metallisation of the propagation path of the 36 YX.LT devices allows the two modes to be discriminated. Successive polymer coatings resulted in the observation of resonant conditions in both modes as the layer thickness was increased. Using the 36 YX.LT devices, we have investigated the application of a novel pulse mode system by sensing a sequence of deposition and removal of a biological layer consisting of vesicles of the phospholipid POPC. A continuous wave system was used to verify the accuracy of the pulse mode system by sensing a series of poly(ethylene glycol) (PEG) solutions. The data clearly demonstrates the ability of the 36 YX.LT pulse mode system to provide rapid measurements of both amplitude and phase for biosensing applications.  相似文献   

15.
Traditionally, the integration of sensing gel layers in surface plasmon resonance (SPR) is achieved via "bulk" methods, such as precipitation, spin-coating or in-situ polymerization onto the total surface of the sensor chip, combined with covalent attachment of the antibody or receptor to the gel surface. This is wasteful in terms of materials as the sensing only occurs at the point of resonance interrogated by the laser. By isolating the sensing materials (antibodies, enzymes, aptamers, polymers, MIPs, etc.) to this exact spot a more efficient use of these recognition elements will be achieved. Here we present a method for the in-situ formation of polymers, using the energy of the evanescent wave field on the surface of an SPR device, specifically localized at the point of interrogation. Using the photo-initiator couple of methylene blue (sensitizing dye) and sodium p-toluenesulfinate (reducing agent) we polymerized a mixture of N,N-methylene-bis-acrylamide and methacrylic acid in water at the focal point of SPR. No polymerization was seen in solution or at any other sites on the sensor surface. Varying parameters such as monomer concentration and exposure time allowed precise control over the polymer thickness (from 20-200 nm). Standard coupling with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide was used for the immobilization of protein G which was used to bind IgG in a typical biosensor format. This model system demonstrated the characteristic performance for this type of immunosensor, validating our deposition method.  相似文献   

16.
A large penetration depth of an evanescent wave is the key to success for developing an ultra high-resolution fiber-based evanescent wave biosensor. Tapering the fiber and launching light at an angle has the potential of increasing the penetration depth of evanescent wave manifolds. The effects of tapering, launch angle and taper length of the fiber have been explored in detail using a ray-tracing model to calculate the highest possible penetration depth of the evanescent field. Evanescent wave penetration depths of the order of the size of living cells have been achieved by optimizing the parameters relating geometry of tapered fibers.  相似文献   

17.
The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neutral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic instability (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy, which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the energy transferred to neutral gas in elastic electron-atom collisions is substantially lower than the threshold energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a positive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of sound waves in the presence of acoustic instability are investigated.  相似文献   

18.
Acoustophoresis refers to the displacement of suspended objects in response to directional forces from sound energy. Given that the suspended objects must be smaller than the incident wavelength of sound and the width of the fluidic channels are typically tens to hundreds of micrometers across, acoustofluidic devices typically use ultrasonic waves generated from a piezoelectric transducer pulsating at high frequencies (in the megahertz range). At characteristic frequencies that depend on the geometry of the device, it is possible to induce the formation of standing waves that can focus particles along desired fluidic streamlines within a bulk flow. Here, we describe a method for the fabrication of acoustophoretic devices from common materials and clean room equipment. We show representative results for the focusing of particles with positive or negative acoustic contrast factors, which move towards the pressure nodes or antinodes of the standing waves, respectively. These devices offer enormous practical utility for precisely positioning large numbers of microscopic entities (e.g., cells) in stationary or flowing fluids for applications ranging from cytometry to assembly.  相似文献   

19.
Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear contributing little to the aetiology of the injury.  相似文献   

20.
Evanescent wave biosensor has been recently employed as a powerful tool for analyses of macromolecular interactions. In the present study, evanescent wave biosensor analysis was developed to analyze the heparin-protein interaction using as ligands a series of heparin derivatives regioselectively desulfated by chemical methods, particularly to evaluate the effect of each sulfate group of heparin. The method for immobilizing heparin on the cuvette of the evanescent wave biosensor equipment was optimized to obtain the high response required for accurate measurement. The best result was achieved when the amino group introduced at the reducing end of heparin was coupled with carboxymethyl dextran on the surface of the cuvette using glycolchitosan as a multivalent linker. The established system appeared to describe well the interactions of heparin with such proteins as acidic and basic fibroblast growth factors and tissue factor pathway inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号