首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Ketoacyl-acyl carrier protein reductase (FabG) is a key component in the type II fatty acid synthase system. The structures of Escherichia coli FabG and the FabG[Y151F] mutant in binary complexes with NADP(H) reveal that mechanistically important conformational changes accompany cofactor binding. The active site Ser-Tyr-Lys triad is repositioned into a catalytically competent constellation, and a hydrogen bonded network consisting of ribose hydroxyls, the Ser-Tyr-Lys triad, and four water molecules creates a proton wire to replenish the tyrosine proton donated during catalysis. Also, a disordered loop in FabG forms a substructure in the complex that shapes the entrance to the active site. A key observation is that the nicotinamide portion of the cofactor is disordered in the FabG[Y151F].NADP(H) complex, and Tyr151 appears to be necessary for high-affinity cofactor binding. Biochemical data confirm that FabG[Y151F] is defective in NADPH binding. Finally, structural changes consistent with the observed negative cooperativity of FabG are described.  相似文献   

2.
The type II fatty acid synthase (FAS) pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials, due to its intrinsic differences from the typeI pathway operating in humans. beta-Ketoacyl acyl carrier protein (ACP) reductase (FabG) performs the NADPH-dependent reduction of beta-ketoacyl-ACP to beta-hydroxyacyl-ACP, the first reductive step in the elongation cycle of fatty acid biosynthesis. In this article, we report intensive studies on the direct interactions of Plasmodium FabG and Plasmodium ACP in solution, in the presence and absence of its cofactor, NADPH, by monitoring the change in intrinsic fluorescence of P.falciparum FabG (PfFabG) and by surface plasmon resonance. To address the issue of the importance of the residues involved in strong, specific and stoichiometric binding of PfFabG to P.falciparum ACP (PfACP), we mutated Arg187, Arg190 and Arg230 of PfFabG. The activities of the mutants were assessed using both an ACP-dependent and an ACP-independent assay. The affinities of all the PfFabG mutants for acetoacetyl-ACP (the physiological substrate) were reduced to different extents as compared to wild-type PfFabG, but were equally active in biochemical assays with the substrate analog acetoacetyl-CoA. Kinetic analysis and studies of direct binding between PfFabG and PfACP confirmed the identification of Arg187 and Arg230 as critical residues for the PfFabG-PfACP interactions. Our studies thus reveal the significance of the positively charged/hydrophobic patch located adjacent to the active site cavities of PfFabG for interactions with PfACP.  相似文献   

3.
Rhamnolipids are extracellular biosurfactants and virulence factors secreted by the opportunistic human pathogen Pseudomonas aeruginosa that are required for swarming motility. The rhlG gene is essential for rhamnolipid formation, and the RhlG enzyme is thought to divert fatty acid synthesis intermediates into the rhamnolipid biosynthetic pathway based on its similarity to FabG, the beta-ketoacyl-acyl carrier protein (ACP) reductase of type II fatty acid synthesis. Crystallographic analysis reveals that the overall structures of the RhlG.NADP+ and FabG.NADP+ complexes are indeed similar, but there are key differences related to function. RhlG does not undergo the conformational changes upon NADP(H) binding at the active site that in FabG are the structural basis of negative allostery. Also, the acyl chain-binding pocket of RhlG is narrow and rigid compared with the larger, flexible substrate-binding subdomain in FabG. Finally, RhlG lacks a positively charged/hydrophobic surface feature adjacent to the active site that is found on enzymes like FabG that recognize the ACP of fatty acid synthesis. RhlG catalyzed the NADPH-dependent reduction of beta-ketodecanoyl-ACP to beta-d-hydroxydecanoyl-ACP. However, the enzyme was 2000-fold less active than FabG in carrying out the same reaction. These structural and biochemical studies establish RhlG as a NADPH-dependent beta-ketoacyl reductase of the SDR protein superfamily and further suggest that the ACP of fatty acid synthesis does not carry the substrates for RhlG.  相似文献   

4.
Bacterial beta-ketoacyl-[acyl carrier protein] (beta-ketoacyl-ACP) reductase (FabG) is a highly conserved and ubiquitously expressed enzyme of the fatty-acid biosynthetic pathway of prokaryotic organisms that catalyzes NADPH-dependent reduction of beta-ketoacyl-ACP intermediates. Therefore, FabG represents an appealing target for the development of new antimicrobial agents. A number of trans-cinnamic acid derivatives were designed and screened for inhibitory activities against FabG from Escherichia coli. These inhibited FabG enzymatic activity with IC(50) values in the microM range, and were used as templates for the subsequent diversification of the chemotype. Introduction of an electron-withdrawing 4-cyano group to the phenol substituent showed improved inhibition over the non-substituted compound. The benzo-[1,3]-dioxol moiety also appeared to be essential for inhibitory activity of trans-cinnamic acid derivatives against FabG from E. coli. To explain the possible binding position, the best inhibitor from the present study was docked in the active site of FabG. The results for the best scoring conformers chosen by the docking programme revealed that cinnamic acid derivatives can be accommodated in the substrate-binding region of the active site, above the nicotinamide moiety of the NADPH cofactor. Additionally, a phage-displayed library of random linear 15-mer peptides was screened against FabG, to identify ligands with the common PPLTXY motif.  相似文献   

5.
Karmodiya K  Surolia N 《The FEBS journal》2006,273(17):4093-4103
The type II fatty acid synthase pathway of Plasmodium falciparum is a validated unique target for developing novel antimalarials because of its intrinsic differences from the type I pathway operating in humans. beta-Ketoacyl-acyl carrier protein reductase is the only enzyme of this pathway that has no isoforms and thus selective inhibitors can be developed for this player of the pathway. We report here intensive studies on the direct interactions of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase with its cofactor, NADPH, acyl carrier protein, acetoacetyl-coenzyme A and other ligands in solution, by monitoring the intrinsic fluorescence (lambdamax 334 nM) of the protein as a result of its lone tryptophan, as well as the fluorescence of NADPH (lambdamax 450 nM) upon binding to the enzyme. Binding of the reduced cofactor makes the enzyme catalytically efficient, as it increases the binding affinity of the substrate, acetoacetyl-coenzyme A, by 16-fold. The binding affinity of acyl carrier protein to the enzyme also increases by approximately threefold upon NADPH binding. Plasmodiumbeta-ketoacyl-acyl carrier protein reductase exhibits negative, homotropic co-operative binding for NADPH, which is enhanced in the presence of acyl carrier protein. Acyl carrier protein increases the accessibility of NADPH to beta-ketoacyl-acyl carrier protein reductase, as evident from the increase in the accessibility of the tryptophan of beta-ketoacyl-acyl carrier protein reductase to acrylamide, from 81 to 98%. In the presence of NADP+, the reaction proceeds in the reverse direction (Ka=23.17 microM-1). These findings provide impetus for exploring the influence of ligands on the structure-activity relationship of Plasmodiumbeta-ketoacyl-acyl carrier protein reductase.  相似文献   

6.
3-酮脂酰ACP还原酶(FabG)在细菌中广泛存在并且十分保守,已经发现的所有FabG及其同系物都具有类似的催化活性中心序列,隶属于短链醇脱氢酶/还原酶(SDRs)超家族成员。它是Ⅱ型脂肪酸合成反应中的关键酶,将3-酮脂酰ACP还原为3-羟脂酰ACP多以NADPH作为辅酶。从搜集的文献来看,国内外针对不同细菌中3-酮脂酰ACP还原酶同系物的研究报道体现了其多样性的特点。但是,近年来,该方面的专题综述十分少见。本文主要对3-酮脂酰ACP还原酶的结构特征、在脂肪酸合成和其他方面的生物学功能,以及以该酶为作用靶点的抑菌剂等方面进行概述,以期为将来3-酮脂酰ACP还原酶的深入研究提供理论参考。  相似文献   

7.
Wang H  Cronan JE 《Biochemistry》2004,43(37):11782-11789
The small genome of the Gram-positive bacterium Lactococcus lactis ssp. lactis IL1403 contains two genes that encode proteins annotated as homologues of Escherichia coli beta-hydroxyacyl-acyl carrier protein (ACP) reductase. E. coli fabG encodes beta-ketoacyl-acyl carrier protein (ACP) reductase, the enzyme responsible for the first reductive step of the fatty acid synthetic cycle. Both of the L. lactis genes are adjacent to (and predicted to be cotranscribed with) other genes that encode proteins having homology to known fatty acid synthetic enzymes. Such relationships have often been used to strengthen annotations based on sequence alignments. Annotation in the case of beta-ketoacyl-ACP reductase is particularly problematic because the protein is a member of a vast protein family, the short-chain alcohol dehydrogenase/reductase (SDR) family. The recent isolation of an E. coli fabG mutant strain encoding a conditionally active beta-ketoacyl-ACP reductase allowed physiological and biochemical testing of the putative L. lactishomologues. We report that expression of only one of the two L. lactis proteins (that annotated as FabG1) allows growth of the E. coli fabG strain under nonpermissive conditions and restores in vitro fatty acid synthetic ability to extracts of the mutant strain. Therefore, like E. coli, L. lactis has a single beta-ketoacyl-ACP reductase active with substrates of all fatty acid chain lengths. The second protein (annotated as FabG2), although inactive in fatty acid synthesis both in vivo and in vitro, was highly active in reduction of the model substrate, beta-ketobutyryl-CoA. As expected from work on the E. coli enzyme, the FabG1 beta-ketobutyryl-CoA reductase activity was inhibited by ACP (which blocks access to the active site) whereas the activity of FabG2 was unaffected by the presence of ACP. These results seem to be an example of a gene duplication event followed by divergence of one copy of the gene to encode a protein having a new function.  相似文献   

8.
Fatty acid synthesis in bacteria is catalyzed by a set of individual enzymes collectively known as type II fatty-acid synthase. Each enzyme interacts with acyl carrier protein (ACP), which shuttles the pathway intermediates between the proteins. The type II enzymes do not possess primary sequence similarity that defines a common ACP-binding site, but rather are hypothesized to possess an electropositive/hydrophobic surface feature that interacts with the electronegative/hydrophobic residues along helix alpha2 of ACP (Zhang, Y.-M., Marrakchi, H., White, S. W., and Rock, C. O. (2003) J. Lipid Res. 44, 1-10). We tested this hypothesis by mutating two surface residues, Arg-129 and Arg-172, located in a hydrophobic patch adjacent to the active site entrance on beta-ketoacyl-ACP reductase (FabG). Enzymatic analysis showed that the mutant enzymes were compromised in their ability to utilize ACP thioester substrates but were fully active in assays with a substrate analog. Direct binding assays and competitive inhibition experiments showed that the FabG mutant proteins had reduced affinities for ACP. Chemical shift perturbation protein NMR experiments showed that FabG-ACP interactions occurred along the length of ACP helix alpha2 and extended into the adjacent loop-2 region to involve Ile-54. These data confirm a role for the highly conserved electronegative/hydrophobic residues along ACP helix alpha2 in recognizing a constellation of Arg residues embedded in a hydrophobic patch on the surface of its partner enzymes, and reveal a role for the loop-2 region in the conformational change associated with ACP binding. The specific FabG-ACP interactions involve the most conserved ACP residues, which accounts for the ability of ACPs and the type II proteins from different species to function interchangeably.  相似文献   

9.
BACKGROUND: beta-Keto acyl carrier protein reductase (BKR) catalyzes the pyridine-nucleotide-dependent reduction of a 3-oxoacyl form of acyl carrier protein (ACP), the first reductive step in de novo fatty acid biosynthesis and a reaction often performed in polyketide biosynthesis. The Brassica napus BKR enzyme is NADPH-dependent and forms part of a dissociable type II fatty acid synthetase (FAS). Significant sequence similarity is observed with enoyl acyl carrier protein reductase (ENR), the other reductase of FAS, and the short-chain alcohol dehydrogenase (SDR) family. RESULTS: The first crystal structure of BKR has been determined at 2.3 A resolution in a binary complex with an NADP(+) cofactor. The structure reveals a homotetramer in which each subunit has a classical dinucleotide-binding fold. A triad of Ser154, Tyr167 and Lys171 residues is found at the active site, characteristic of the SDR family. Overall BKR has a very similar structure to ENR with good superimposition of catalytically important groups. Modelling of the substrate into the active site of BKR indicates the need for conformational changes in the enzyme. CONCLUSIONS: A catalytic mechanism can be proposed involving the conserved triad. Helix alpha6 must shift its position to permit substrate binding to BKR and might act as a flexible lid on the active site. The similarities in fold, mechanism and substrate binding between BKR, which catalyzes a carbon-oxygen double-bond reduction, and ENR, the carbon-carbon double-bond oxidoreductase in FAS, suggest a close evolutionary link during the development of the fatty acid biosynthetic pathway.  相似文献   

10.
Li Q  Khosla C  Puglisi JD  Liu CW 《Biochemistry》2003,42(16):4648-4657
During polyketide biosynthesis, acyl carrier proteins (ACPs) perform the central role of transferring polyketide intermediates between active sites of polyketide synthase. The 4'-phosphopantetheine prosthetic group of a holo-ACP is a long and flexible arm that can reach into different active sites and provide a terminal sulfhydryl group for the attachment of acyl groups through a thioester linkage. We have determined the solution structure and characterized backbone dynamics of the holo form of the frenolicin acyl carrier protein (fren holo-ACP) by nuclear magnetic resonance (NMR). Unambiguous assignments were made for 433 hydrogen atoms, 333 carbon atoms, and 84 nitrogen atoms, representing a total of 94.6% of the assignable atoms in this protein. From 879 meaningful NOEs and 45 angle constraints, a family of 24 structures has been calculated. The solution structure is composed of three major alpha-helices packed in a bundle with three additional short helices in intervening loops; one of the short helices slowly exchanges between two conformations. Superposition of the major helical regions on the mean structure yields average atomic rmsd values of 0.49 +/- 0.09 and 0.91 +/- 0.08 A for backbone and non-hydrogen atoms, respectively. Although the three-helix bundle fold is conserved among acyl carrier proteins involved in fatty acid synthases and polyketide synthases, a detailed comparison revealed that ACPs from polyketide biosynthetic pathways are more related to each other in tertiary fold than to their homologues from fatty acid biosynthetic pathways. Comparison of the free form of ACPs (NMR structures of fren ACP and the Bacillus subtilis ACP) with the substrate-bound form of ACP (crystal structure of butyryl-ACP from Escherichia coli) suggests that conformational exchange plays a role in substrate binding.  相似文献   

11.
3-酮基脂酰ACP还原酶催化3-酮基脂酰ACP还原为3-羟基脂酰ACP,是细菌脂肪酸合成反应的关键酶之一.为了明确该酶中110位的保守天冬酰胺残基在酶催化活性和酶结构中的作用,本研究采用基因定点突变和蛋白质表达纯化技术,获得了大肠杆菌3-酮基脂酰ACP还原酶FabG的两个突变蛋白:FabG N110Q和FabG N110L.圆二色谱结果显示,天冬酰胺残基的突变改变了FabG的空间结构,使突变蛋白的α螺旋结构明显增加.以3-酮脂酰ACP为底物的酶活性测定表明,突变蛋白的酶活性均有下降,但残存的酶活性达到了FabG的75%以上.突变蛋白FabG N110Q和FabG N110L具有3-酮基脂酰ACP还原酶的活性,能在体外重建细菌脂肪酸合成反应.对fabG温度敏感突变株的遗传互补分析表明,FabG蛋白110位天冬酰胺突变为谷氨酰胺或亮氨酸后,在一定的条件下仍能互补大肠杆菌的生长.本研究结果提示,FabG 110位的天冬酰胺残基不是参与3-酮基脂酰ACP还原酶催化反应的必需氨基酸,它只是作为结构氨基酸,在维持FabG的空间结构的稳定性方面起作用.  相似文献   

12.
N Bayan  H Thérisod 《FEBS letters》1989,255(2):330-334
We [(1989) FEBS Lett., in press] have previously shown that membrane vesicles from Escherichia coli contain protein-binding sites for the acyl carrier protein (ACP). We report now that membrane vesicles prepared from a strain amplified for glycerol-3-phosphate acyltransferase (GPAT) contain a higher number of ACP-binding sites than the membrane vesicles prepared from a wild type strain. In addition, we show that GPAT is retained specifically on an ACP-Sepharose affinity column and that [3H]ACP binds to the enzyme solubilized by detergent. We conclude that GPAT, an inner membrane protein which catalyses the transesterification of a fatty acyl group from acyl coenzyme A or acyl ACP to glycerol-3-phosphate, possesses a binding site for ACP.  相似文献   

13.
Li BH  Ma XF  Wu XD  Tian WX 《IUBMB life》2006,58(1):39-46
It was found that chlorogenic acid inhibited in vitro animal fatty acid synthase (FAS I) and the ss-ketoacyl-ACP reductase (FabG) from Escherichia coli in a concentration-dependent manner with respective IC50 of 94.8 and 88.1 microM. The results of Lineweaver-Burk plots indicated that chlorogenic acid inhibited competitively the binding of NADPH to FAS I, while left those of acetyl-CoA and malonyl-CoA unaffected. Further kinetic studies showed that chlorogenic acid blocked the activity of FAS I mainly by inhibiting the ss-ketoacyl reductase domain, which catalyzed the same reaction as that done by FabG in the fatty acid synthesis. The ss-ketoacyl reduction reactions accomplished by both FAS I and FabG required nucleotide cofactor, NADPH. Furthermore, the Lineweaver-Burk and Yonetani-Theorell analyses implicated that chlorogenic acid filled competitively in the binding-pocket of NADPH in the ss-ketoacyl reductase domain of FAS I. The similar results were also obtained from the inhibition of FabG by chlorogenic acid. As observed in these results, the inhibitions of FAS I and FabG by chlorogenic acid were highly related to the interference of the inhibitor with NADPH, which was possibly due to the similarity between chlorogenic acid and some portion of NADPH, maybe the section consisting of the two ribose groups.  相似文献   

14.
Enoyl-[acyl carrier protein] (ACP) reductase (ENR) is a key enzyme in type II fatty acid synthesis that catalyzes the last step in each elongation cycle. Therefore, it has been considered as a target for antibiotics. However, recent studies indicate that some pathogens have more than one ENR; in particular, Bacillus subtilis has two ENRs, FabI and FabL. The crystal structures of the ternary complexes of BsFaBI and BsFabL are found as a homotetramer showing the same overall structure despite a sequence identity of only 24%. The positions of the catalytic dyad of Tyr-(Xaa)6-Lys in FabL are almost identical to that of FabI, but a detailed structural analysis shows that FabL shares more structural similarities with FabG and other members of the SDR (short-chain alcohol dehydrogenase/reductase) family. The apo FabL structure shows significantly different conformations at the cofactor and the substrate-binding regions, and this resulted in a totally different tetrameric arrangement reflecting the flexibility of these regions in the absence of the cofactor and substrate/inhibitor.  相似文献   

15.
Enoyl acyl carrier protein (ACP) reductase catalyses the last reductive step of fatty acid biosynthesis, reducing the enoyl group of a growing fatty acid chain attached to ACP to its acyl product using NAD(P)H as the cofactor. This enzyme is the target for the diazaborine class of antibacterial agents, the biocide triclosan, and one of the targets for the front-line anti-tuberculosis drug isoniazid. The structures of complexes of Escherichia coli enoyl-ACP reductase (ENR) from crystals grown in the presence of NAD+ and a family of diazaborine compounds have been determined. Analysis of the structures has revealed that a mobile loop in the structure of the binary complex with NAD+ becomes ordered on binding diazaborine/NAD+ but displays a different conformation in the two subunits of the asymmetric unit. The work presented here reveals how, for one of the ordered conformations adopted by the mobile loop, the mode of diazaborine binding correlates well with the activity profiles of the diazaborine family. Additionally, diazaborine binding provides insights into the pocket on the enzyme surface occupied by the growing fatty acid chain.  相似文献   

16.
Tang Y  Lee HY  Tang Y  Kim CY  Mathews I  Khosla C 《Biochemistry》2006,45(47):14085-14093
Aromatic polyketides are medicinally important natural products produced by type II polyketide synthases (PKSs). Some aromatic PKSs are bimodular and include a dedicated initiation module which synthesizes a non-acetate primer unit. Understanding the mechanism of this initiation module is expected to further enhance the potential for regiospecific modification of bacterial aromatic polyketides. A typical initiation module is comprised of a ketosynthase (KS), an acyl carrier protein (ACP), a malonyl-CoA:ACP transacylase (MAT), an acyl-ACP thioesterase, a ketoreductase (KR), a dehydratase (DH), and an enoyl reductase (ER). Thus far, the identities of the ketoreductase, dehydratase, and enoyl reductase remain a mystery because they are not encoded within the PKS biosynthetic gene cluster. Here we report that SCO1815 from Streptomyces coelicolor A3(2), an uncharacterized homologue of a NADPH-dependent ketoreductase, recognizes and reduces the beta-ketoacyl-ACP intermediate from the initiation module of the R1128 PKS. SCO1815 exhibits moderate specificity for both the acyl chain and the thiol donor. The X-ray crystal structure of SCO1815 was determined to 2.0 A. The structure shows that SCO1815 adopts a Rossmann fold and suggests that a conformational change occurs upon cofactor binding. We propose that a positively charged patch formed by three conserved residues is the ACP docking site. Our findings provide new engineering opportunities for incorporating unnatural primer units into novel polyketides and shed light on the biology of yet another cryptic protein in the S. coelicolor genome.  相似文献   

17.
Extracts of developing soybean cotyledons contain a highly specific stearyl acyl carrier protein (ACP) desaturase which in the presence of NADPH, O2, ferredoxin and ferredoxin: NADP+ reductase, rapidly converts stearyl ACP to oleyl ACP. The enzyme system has a high affinity for O2, near-maximal activity being obtained at only 10 μm O2. The pH optimum for the desaturase is 6.0. Stearic acid and stearyl-CoA, alone or in the presence of acyl carrier protein, are totally inactive. Although the enzyme is found in extracts prepared from developing soybean seeds (15–50 days after flowering), activity was not detected in extracts of germinated seeds.  相似文献   

18.
(S)-1-Phenylethanol dehydrogenase (PED) from the denitrifying bacterium strain EbN1 catalyzes the NAD+-dependent, stereospecific oxidation of (S)-1-phenylethanol to acetophenone and the biotechnologically interesting reverse reaction. This novel enzyme belongs to the short-chain alcohol dehydrogenase/aldehyde reductase family. The coding gene (ped) was heterologously expressed in Escherichia coli and the purified protein was crystallized. The X-ray structures of the apo-form and the NAD+-bound form were solved at a resolution of 2.1 and 2.4 A, respectively, revealing that the enzyme is a tetramer with two types of hydrophobic dimerization interfaces, similar to beta-oxoacyl-[acyl carrier protein] reductase (FabG) from E. coli. NAD+-binding is associated with a conformational shift of the substrate binding loop of PED from a crystallographically unordered "open" to a more ordered "closed" form. Modeling the substrate acetophenone into the active site revealed the structural prerequisites for the strong enantioselectivity of the enzyme and for the catalytic mechanism. Studies on the steady-state kinetics of PED indicated a highly positive cooperativity of both catalytic directions with respect to the substrates. This is contrasted by the behavior of FabG. Moreover, PED exhibits extensive regulation on the enzyme level, being inhibited by elevated concentrations of substrates and products, as well as the wrong enantiomer of 1-phenylethanol. These regulatory properties of PED are consistent with the presence of a putative "transmission module" between the subunits. This module consists of the C-terminal loops of all four subunits, which form a special interconnected structural domain and mediate close contact of the subunits, and of a phenylalanine residue in each subunit that reaches out between substrate-binding loop and C-terminal domain of an adjacent subunit. These elements may transmit the substrate-induced conformational change of the substrate binding loop from one subunit to the others in the tetrameric complex and thus mediate the cooperative behavior of PED.  相似文献   

19.
Acyl carrier protein (ACP) is an essential cofactor in biosynthesis of fatty acids and many other reactions that require acyl transfer steps. We have determined the first crystal structures of an acylated form of ACP from E. coli, that of butyryl-ACP. Our analysis of the molecular surface of ACP reveals a plastic hydrophobic cavity in the vicinity of the phosphopantethylated Ser36 residue that is expanded and occupied by the butyryl and beta-mercaptoethylamine moieties of the acylated 4'-phosphopantetheine group in one of our crystal forms. In the other form, the cavity is contracted, and we propose that the protein has adopted the conformation after delivery of substrate into the active site of a partner enzyme.  相似文献   

20.
Epigallocatechin gallate (EGCG), a major compound from green tea, reversibly inhibits beta-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli. In this study, we found that EGCG exhibited an atypical time-dependent inhibition of FabG, which possibly resulted from the EGCG-induced aggregation of FabG. It was observed that FabG inactivation and aggregation occurred nearly simultaneously, with a lag time that decreased with increasing EGCG concentration. These results suggest that some chemical reactions, required for aggregation and inactivation, occurred during the lag time. Since EGC was detected by HPLC after the incubation of EGCG with FabG, EGCG probably covalently modified FabG. These further results showed that 1 tetramer of FabG must be modified by several, possibly 4, EGCG molecules before the formation of FabG aggregates. FabG aggregation was a first-order reaction independent of protein concentration. Due to an initial lag time, the first-order rate of aggregation gradually increased, reaching a maximal and constant value. The effect of increasing concentration of EGCG on the first-order rate constant for aggregation indicated that EGCG bound to FabG by affinity labeling. Based on the results, we propose a mechanism for the interaction of EGCG with FabG:EGCG first binds reversibly to each subunit of FabG, followed by covalent modification and then aggregation of the 4 EGCG-modified subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号