首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:克隆、表达、纯化人免疫缺陷病毒Ⅰ型(HIV-1)Vpu蛋白,为其功能及免疫学研究奠定基础。方法:PCR扩增Vpu基因,纯化、酶切后克隆到原核表达载体pET32a中,转化大肠杆菌BL21(DE3)菌株获得表达工程菌株,IPTG诱导蛋白表达,免疫印迹鉴定目的蛋白,亲和层析纯化蛋白。结果:构建了HIV-1Vpu蛋白的原核表达载体Vpu-pET32a,并在大肠杆菌中高效表达,目的蛋白呈可溶性形式存在,免疫印迹检测显示为目的蛋白,经Ni—NTAAgarose纯化获得了高纯度的目的蛋白。结论:在原核表达系统中表达了可溶性HIV-1Vpu蛋白,为进一步进行HIV-1Vpu蛋白的免疫原性和功能研究奠定了基础。  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1)-specific Vpu is an 81-amino-acid amphipathic integral membrane protein with at least two different biological functions: (i) enhancement of virus particle release from the plasma membrane of HIV-1-infected cells and (ii) degradation of the virus receptor CD4 in the endoplasmic reticulum (ER). We have previously found that Vpu is phosphorylated in infected cells at two seryl residues in positions 52 and 56 by the ubiquitous casein kinase 2. To study the role of Vpu phosphorylation on its biological activity, a mutant of the vpu gene lacking both phosphoacceptor sites was introduced into the infectious molecular clone of HIV-1, pNL4-3, as well as subgenomic Vpu expression vectors. This mutation did not affect the expression level or the stability of Vpu but had a significant effect on its biological activity in infected T cells as well as transfected HeLa cells. Despite the presence of comparable amounts of wild-type and nonphosphorylated Vpu, decay of CD4 was observed only in the presence of phosphorylated wild-type Vpu. Nonphosphorylated Vpu was unable to induce degradation of CD4 even if the proteins were artificially retained in the ER. In contrast, Vpu-mediated enhancement of virus secretion was only partially dependent on Vpu phosphorylation. Enhancement of particle release by wild-type Vpu was efficiently blocked when Vpu was artificially retained in the ER, suggesting that the two biological functions of Vpu are independent, occur at different sites within a cell, and exhibit different sensitivity to phosphorylation.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) Vpu protein binds to the CD4 receptor and induces its degradation by cytosolic proteasomes. This process involves the recruitment of human betaTrCP (TrCP), a key member of the SkpI-Cdc53-F-box E3 ubiquitin ligase complex that specifically interacts with phosphorylated Vpu molecules. Interestingly, Vpu itself, unlike other TrCP-interacting proteins, is not targeted for degradation by proteasomes. We now report that, by virtue of its affinity for TrCP and resistance to degradation, Vpu, but not a phosphorylation mutant unable to interact with TrCP, has a dominant negative effect on TrCP function. As a consequence, expression of Vpu in HIV-infected T cells or in HeLa cells inhibited TNF-alpha-induced degradation of IkappaB-alpha. Vpu did not inhibit TNF-alpha-mediated activation of the IkappaB kinase but instead interfered with the subsequent TrCP-dependent degradation of phosphorylated IkappaB-alpha. This resulted in a pronounced reduction of NF-kappaB activity. We also observed that in cells producing Vpu-defective virus, NF-kappaB activity was significantly increased even in the absence of cytokine stimulation. However, in the presence of Vpu, this HIV-mediated NF-kappaB activation was markedly reduced. These results suggest that Vpu modulates both virus- and cytokine-induced activation of NF-kappaB in HIV-1-infected cells.  相似文献   

4.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

5.
The central region of the N-myc protein has a characteristic amino acid sequence EDTLSDSDDEDD, which is very similar to those of particular domains of adenovirus E1A, human papilloma virus E7, Simian virus 40 large T, c-myc and L-myc proteins. Domains of these three viral oncoproteins have recently been shown to be specific binding sites for the tumor-suppressor gene retinoblastoma protein. We have noted that the sequence of serine followed by a cluster of acidic amino acids is exactly the same as that of a typical substrate of casein kinase II (CKII). Therefore, we investigated whether these nuclear oncoproteins are phosphorylated by CKII. For this purpose, we fused the beta-galactosidase and N-myc genes including this domain and expressed it in Escherichia coli cells. Several mutant N-myc genes, containing single amino acid substitutions in this domain, were also used to produce fused proteins. Strong phosphorylation by CKII was detected with the fused protein of wild-type N-myc. However, no phosphorylation of beta-galactosidase itself was observed and the phosphorylations of fused mutant proteins were low. Another fused N-myc protein containing most of the C-terminal region downstream of this acidic region was not phosphorylated by CKII. Analysis of phosphorylation sites in synthetic peptides of this acidic region identified the major sites phosphorylated by CKII as Ser261 and Ser263. On two-dimensional tryptic mapping of phosphorylated N-myc proteins, major spots of in vitro-labeled and in-vivo-labeled N-myc proteins were detected in the same positions. These results suggest that two serine residues of the acidic central region of the N-myc protein are phosphorylated by CKII in vivo as well as in vitro. The functional significance of this acidic domain is discussed.  相似文献   

6.
Oh NS  Yoon SH  Lee WK  Choi JY  Min do S  Bae YS 《Gene》2007,386(1-2):147-153
CKII plays a significant role in cell proliferation and cell cycle control. In this report, yeast two-hybrid assay and pull-down assay demonstrate that CKBBP2/CRIF1 associates with the beta subunit of CKII in vitro and in vivo. Recombinant CKBBP2/CRIF1 is phosphorylated in vitro by purified CKII and by CKII inhibitor apigenin-sensitive protein kinase in HEK293 cell extract. Phosphoamino acid analysis and mutational analysis indicate that CKII phosphorylates serine at residue 221 within CKBBP2/CRIF1. Furthermore, serine to alanine mutation at residue 221 abrogates the phosphorylation of CKBBP2/CRIF1 observed in HEK293 cell extract, indicating that CKII is a major kinase that is responsible for phosphorylation of CKBBP2/CRIF1. As compared with the wild-type CKBBP2/CRIF1 or nonphosphorylatable mutant CKBBP2(S221A) (in which the serine-221 is replaced by alanine), overexpression of CKBBP2(S221E) in COS7 cells promotes cell proliferation. Taken together, the present results suggest that CKII may be involved in cell proliferation, at least in part, through the phosphorylation of serine-221 within CKBBP2/CRIF1.  相似文献   

7.
In eukaryotic cells, protein kinase CKII is required for progression through the cell division cycle. We recently reported that CKBBP1/SAG/ROC2/Rbx2 associates with the beta-subunit of CKII and is phosphorylated by purified CKII in the presence of ATP in vitro. In this report, we demonstrate that CKBBP1 is efficiently phosphorylated in vitro by purified CKII in the presence of GTP and by heparin-sensitive protein kinase in HeLa cell extract. Mutational analysis indicates that CKII phosphorylates threonine at residue 10 within CKBBP1. Furthermore, CKBBP1 is phosphorylated in vivo and threonine to alanine mutation at residue 10 abrogates the phosphorylation of CKBBP1 observed in vivo, indicating that CKII is a major kinase that is responsible for in vivo phosphorylation of CKBBP1. As compared with the wild-type CKBBP1 or CKBBP1T10E (in which threonine 10 is replaced by glutamate), overexpression of nonphosphorylatable CKBBP1 (CKBBP1T10A) results in accumulation of IkappaBalpha and p27Kip1. Experiments using proteasome inhibitor MG132 and CKII inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole suggest that the accumulation of IkappaBalpha and p27Kip1 results primarily from the reduction of proteasomal degradation in cells expressing CKBBP1T10A, and that CKII-mediated CKBBP1 phosphorylation is required for efficient degradation of IkappaBalpha and p27Kip1. Overexpression of CKBBP1T10A in HeLa cells suppresses cell proliferation and causes accumulation of G1/G0 peak of the cell cycle. Taken together, our results indicate that CKII may control IkappaBalpha and p27Kip1 degradation and thereby G1/S phase transition through the phosphorylation of threonine 10 within CKBBP1.  相似文献   

8.
The tumor (T) antigens encoded by the human adenovirus early transforming region 1A (E1A) are gene regulatory proteins whose functions can immortalize cells. We have recently described the synthesis in Escherichia coli and the purification of the complete T antigens encoded by the adenovirus type 12 (Ad12) E1A 12S mRNA (235-residue [235R] T antigen) and 13S mRNA (266R T antigen). In this study, we show that the Ad12 E1A T antigens are extensively phosphorylated in Ad12-infected mammalian cells but are not phosphorylated in E. coli. Inasmuch as posttranslational phosphorylation at specific amino acid sites may be important for biological activity, we have studied the phosphorylation of the E. coli-produced T antigens in vitro by using a kinase activity isolated from cultured human KB cells. The kinase was purified about 300-fold and appears to be a cyclic AMP-independent, Ca2+-independent protein kinase requiring only ATP and Mg2+ for activity. To determine which amino acids are phosphorylated and whether phosphorylation in vitro occurs at the same amino acid sites that are phosphorylated in vivo, the Ad12 E1A T-antigen species synthesized by infected cells were metabolically labeled with 32Pi and compared with the E. coli-produced E1A T antigens labeled in vitro with [gamma-32P]ATP by using the partially purified kinase. Partial V8 proteolysis analysis gave similar patterns for in vivo- and in vitro-phosphorylated T antigen. Two-dimensional maps of tryptic phosphopeptides and of chymotryptic phosphopeptides suggested that mainly the same amino acid sites are phosphorylated in vitro and in vivo and that phosphorylation occurred at multiple sites distributed throughout the T-antigen molecule. Serine was the only amino acid that was phosphorylated both in vivo and in vitro, and, surprisingly, most serines appeared to be phosphorylated. The feasibility of faithfully phosphorylating T antigens in vitro suggests that the E. coli-produced Ad12 E1A 235R and 266R T antigens may prove useful for molecular studies on T-antigen function.  相似文献   

9.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

10.
11.
12.
Hepatic carnitine palmitoyltransferase-I (CPT-IL) isolated from mitochondrial outer membranes obtained in the presence of protein phosphatase inhibitors is readily recognized by phosphoamino acid antibodies. Mass spectrometric analysis of CPT-IL tryptic digests revealed the presence of three phosphopeptides including one with a protein kinase CKII (CKII) consensus site. Incubation of dephosphorylated outer membranes with protein kinases and [gamma-32P]ATP resulted in radiolabeling of CPT-I only by CKII. Using mass spectrometry, only one region of phosphorylation was detected in CPT-I isolated from CKII-treated mitochondria. The sequence of the peptide and position of phosphorylated amino acids have been determined unequivocally as FpSSPETDpSHRFGK (residues 740-752). Furthermore, incubation of dephosphorylated outer membranes with CKII and unlabeled ATP led to increased catalytic activity and rendered malonyl-CoA inhibition of CPT-I from competitive to uncompetitive. These observations identify a new mechanism for regulation of hepatic CPT-I by phosphorylation.  相似文献   

13.
14.
Viral protein U (Vpu) of HIV-1 has two known functions in replication of the virus: degradation of its cellular receptor CD4 and enhancement of viral particle release. Vpu binds CD4 and simultaneously recruits the betaTrCP subunit of the SCF(betaTrCP) ubiquitin ligase complex through its constitutively phosphorylated DS52GXXS56 motif. In this process, Vpu was found to escape degradation, while inhibiting the degradation of betaTrCP natural targets such as beta-catenin and IkappaBalpha. We further addressed this Vpu inhibitory function with respect to the degradation of Emi1 and Cdc25A, two betaTrCP substrates involved in cell-cycle progression. In the course of these experiments, we underscored the importance of a novel phosphorylation site in Vpu. We show that, especially in cells arrested in early mitosis, Vpu undergoes phosphorylation of the serine 61 residue, which lies adjacent to the betaTrCP-binding motif. This phosphorylation event triggers Vpu degradation by a betaTrCP-independent process. Mutation of Vpu S61 in the HIV-1 provirus extends the half-life of the protein and significantly increases the release of HIV-1 particles from HeLa cells. However, the S61 determinant of regulated Vpu turnover is highly conserved within HIV-1 isolates. Altogether, our results highlight a mechanism where differential phosphorylation of Vpu determines its fate as an adaptor or as a substrate of distinct ubiquitin ligases. Conservation of the Vpu degradation determinant, despite its negative effect on virion release, argues for a role in overall HIV-1 fitness.  相似文献   

15.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

16.
Mammalian DNA ligase I has been shown to be a phosphoprotein. Dephosphorylation of purified DNA ligase I causes inactivation, an effect dependent on the presence of the N-terminal region of the protein. Expression of full-length human DNA ligase I in Escherichia coli yielded soluble but catalytically inactive enzyme whereas an N-terminally truncated form expressed activity. Incubation of the full-length preparation from E. coli with purified casein kinase II (CKII) resulted in phosphorylation of the N-terminal region and was accompanied by activation of the DNA ligase. Of a variety of purified protein kinases tested, only CKII stimulated the activity of calf thymus DNA ligase I. Tryptic phosphopeptide analysis of DNA ligase I revealed that CKII specifically phosphorylated a major peptide also apparently phosphorylated in cells, implying that CKII is a protein kinase acting on DNA ligase I in the cell nucleus. These data suggest that DNA ligase I is negatively regulated by its N-terminal region and that this inhibition can be relieved by post-translational modification.  相似文献   

17.
Vpu is a small phosphorylated integral membrane protein encoded by the human immunodeficiency virus type 1 genome and found in the endoplasmic reticulum and Golgi membranes of infected cells. It has been linked to roles in virus particle budding and degradation of CD4 in the endoplasmic reticulum. However, the molecular mechanisms employed by Vpu in performance of these functions are unknown. Structural similarities between Vpu and the M2 protein of influenza A virus have raised the question of whether the two proteins are functionally analogous: M2 has been demonstrated to form cation-selective ion channels in phospholipid membranes. In this paper we provide evidence that Vpu, purified after expression in Escherichia coli, also forms ion channels in planar lipid bilayers. The channels are approximately five- to sixfold more permeable to sodium and potassium cations than to chloride or phosphate anions. A bacterial cross-feeding assay was used to demonstrate that Vpu can also form sodium-permeable channels in vivo in the E. coli plasma membrane.  相似文献   

18.
In HeLa cells metabolically labeled in vivo with [32P] orthophosphate in the presence of okadaic acid the concentration of phosphorylated A1 protein was increased significantly as compared to controls. Purified recombinant hnRNP protein A1 served as an excellent substrate in vitro for the catalytic subunit of cAMP-dependent protein kinase (PKA) and for casein kinase II (CKII). Thin layer electrophoresis of A1 acid hydrolysates showed the protein to be phosphorylated exclusively on serine residue by both kinases. V8 phosphopeptide maps revealed that the target site(s) of in vitro phosphorylation are located in the C-terminal region of A1. Phosphoamino acid sequence analysis and site directed mutagenesis identified Ser 199 as the sole phosphoamino acid in the protein phosphorylated by PKA. Phosphorylation introduced by PKA resulted in the suppression of the ability of protein A1 to promote strand annealing in vitro, without any detectable effect on its nucleic acid binding capacity. This finding indicates that phosphorylation of a single serine residue in the C-terminal domain may significantly alter the properties of protein A1.  相似文献   

19.
HIV-1 Vpu prevents incorporation of tetherin (BST2/ CD317) into budding virions and targets it for ESCRT-dependent endosomal degradation via a clathrin-dependent process. This requires a variant acidic dileucine-sorting motif (ExxxLV) in Vpu. Structural studies demonstrate that recombinant Vpu/tetherin fusions can form a ternary complex with the clathrin adaptor AP-1. However, open questions still exist about Vpu’s mechanism of action. Particularly, whether endosomal degradation and the recruitment of the E3 ubiquitin ligase SCFβTRCP1/2 to a conserved phosphorylated binding site, DSGNES, are required for antagonism. Re-evaluation of the phenotype of Vpu phosphorylation mutants and naturally occurring allelic variants reveals that the requirement for the Vpu phosphoserine motif in tetherin antagonism is dissociable from SCFβTRCP1/2 and ESCRT-dependent tetherin degradation. Vpu phospho-mutants phenocopy ExxxLV mutants, and can be rescued by direct clathrin interaction in the absence of SCFβTRCP1/2 recruitment. Moreover, we demonstrate physical interaction between Vpu and AP-1 or AP-2 in cells. This requires Vpu/tetherin transmembrane domain interactions as well as the ExxxLV motif. Importantly, it also requires the Vpu phosphoserine motif and adjacent acidic residues. Taken together these data explain the discordance between the role of SCFβTRCP1/2 and Vpu phosphorylation in tetherin antagonism, and indicate that phosphorylation of Vpu in Vpu/tetherin complexes regulates promiscuous recruitment of adaptors, implicating clathrin-dependent sorting as an essential first step in tetherin antagonism.  相似文献   

20.
Recombinantly expressed human ATP:citrate lyase was purified from E. coli, and its kinetic behavior was characterized before and after phosphorylation. Cyclic AMP-dependent protein kinase catalyzed the incorporation of only 1 mol of phosphate per mole of enzyme homotetramer, and glycogen synthase kinase-3 incorporated an additional 2 mol of phosphate into the phosphorylated protein. Isoelectric focusing revealed that all of the phosphates were incorporated into only one of the four enzyme subunits. Phosphorylation resulted in a 6-fold increase in V(max) and the conversion of citrate dependence from sigmoidal, displaying negative cooperativity, to hyperbolic. The phosphorylated recombinant enzyme is more similar to the enzyme isolated from mammalian tissues than unphosphorylated enzyme with respect to the K(m) for citrate, CoA, and ATP, and the specific activity. Fructose 6-phosphate was found to be a potent activator (60-fold) of the unphosphorylated recombinant enzyme, with half-maximal activation at 0.16 mM, which results in a decrease in the apparent K(m) for citrate and ATP, as well as an increase in the V(max) of the reaction. Thus, human ATP:citrate lyase activity is regulated in vitro allosterically by phosphorylated sugars as well as covalently by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号