首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

2.
We investigated the uptake and distribution of zinc (Zn) either applied to the roots or to the leaves in rice during grain development. Plants of two aerobic rice cultivars were grown in a nutrient solution with either sufficient Zn or surplus Zn. Root treatment with 1 week‘s supply of both 65Zn and unlabelled Zn was started at flowering or 15 days after flowering (DAF). Foliar treatment with 65Zn applied to the flag leaf or to senescent leaves was carried out at flowering. When 65Zn was applied to roots, plants continued to take up Zn after flowering, even beyond 15 DAF, irrespective of cultivar and Zn nutritional status of the plants. During the 1 week of supply of both 65Zn and unlabelled Zn, which either started at flowering or 15 DAF, the absorbed 65Zn was mainly distributed to roots, stem and grains. Little 65Zn was allocated to the leaves. Following a week of 65Zn supply directly after flowering, under sufficient Zn or surplus Zn, the proportions of total 65Zn uptake allocated to the grains continued to change during grain filling (9–33%). This Zn mainly came from the roots but under sufficient Zn supply also from the stem. With 65Zn applied to leaves (either the flag leaf or the lowest senescent leaf), both cultivars showed similar Zn distribution within the plants. About 45–50% of the 65Zn absorbed was transported out of the 65Zn‐treated leaf. From that Zn, more than 90% was translocated to other vegetative organs; little was partitioned to the panicle parts and even less to the grains. These results suggest that in rice plants grown under sufficient or surplus Zn supply, most of the Zn accumulated in the grains originates from uptake by roots after flowering and not from Zn remobilisation from leaves.  相似文献   

3.
A greenhouse experiment was conducted to study the uptake and translocation of N applied at different rates of15N fertilizer to the fruiting and rooting zones of peanut plants. Higher N level treatments in the fruiting zone resulted in higher N concentrations in the shell and gynophore with fruit and lower N concentration in the testa when compared with the results of lower level treatments in the fruiting zone. Regardless of N levels applied in both rooting and fruiting zones, about 60–65% of15N application to the rooting zone was absorbed through the root, of which 30–35% was found in the seed. With fertilizer application to the fruiting zone and regardless of levels applied to both zones, 35–40% of the15N supplied was absorbed through the shell, and 65% of this remained in the fruit parts while 35% of it was translocated to the vegetation and roots. The percentage of N in the vegetative and root parts, derived from the fertilizer-15N through the shell, was lower in the root and nodules than in the shoot and gynophore without fruit. The translocation of N, absorbed through the roots, to the fruit as well as the amount of symbiotically fixed N were decreased by additions of N to the fruiting zone.  相似文献   

4.
Summary The uptake of Zn65 by seeds ofVicia faba, soaked in a Zn65Cl2 solution and maintained within the experimental condition described in the text, was constant and did not depend on the amount of the radionuclide given. However, the percentage of the total absorbed Zn65 retained by seed coats varied according to the cultural variety ofVicia faba. Most of the Zn65 entering the seed, remained bound to the seed coat, the remainder entered the embryo and cotyledons and was concentrated around the abaxial part of this latter, lessening towards the adaxial region. The fate of the isotope was followed in all stage of plant development. Its distribution was represented as counts per minute per unit mass (dry) of plant tissue, and on a percentage basis. In general, zinc decreased in the main root acropetally then increased at the root stem transition zone, decreased again in the first internode than increased acropetally towards the apex of the stem. Anthers had the highest counts per unit mass compared to other plant organs, including the rest of the flower. Zn65 distribution calculated on a percentage basis increased in that order: Roots, stem, leaves in one month old plants and older. These observations held also in plants grown from —Zn medium and from seeds to which radioactive zinc was introduced before and during the formation of their pods. Water-soluble Zn65 was also investigated in different plant's organs. Some of these results are compared and discussed with those previously obtained using a histochemical method.  相似文献   

5.
Nutrient uptake and translocation by above-ground adventitious roots and below-ground roots of woodySalix syringiana saplings were studied with gamma spectrometry. Each of four radionuclides (75Se,138Cs,54Mn, and65Zn) administered to adventitious and belowground roots were detected in stems and leaves within one month. Nuclides tended to be immobilized in the leaves and branches closest to the adventitious roots that absorbed them, while nuclides absorbed from below-ground sources were distributed more evenly throughout the plant. The capacity of adventitious roots to acquire nutrients from above-ground sources suggests they function as a potential auxiliary pathway of nutrient uptake and might enhance plant nutrient status where below-ground root uptake it hindered by adverse soil conditions.  相似文献   

6.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

7.
Rice (Oryza sativa) is the worlds’ most important cereal and potentially an important source of zinc (Zn) for people who eat mainly rice. To improve Zn delivery by rice, plant Zn uptake and internal allocation need to be better understood. This study reports on within‐plant allocation and potential Zn accumulation in the rice grain in four so‐called aerobic rice cultivars (Handao297, K150, Handao502 and Baxiludao). Two controlled‐condition experiments were carried out, one with a wide range of constant Zn concentrations in the medium and one with a range of plant growth rate‐related supply rates. In both experiments, increased Zn supply induced increased plant Zn uptake rate throughout crop development, when expressed as daily Zn uptake (μg day?1) or as daily Zn uptake per gram of plant dry matter (μg g?1). Zinc mass concentration (ZnMC) in all plant organs increased with an increase in Zn supply but to various degrees. At higher uptake levels, the ZnMC in stems increased most, while the ZnMC in hulled grains (brown rice) increased least. The increase in leaf ZnMC was generally small, but at toxic levels in the medium, leaf ZnMC increased significantly. It appears that regulation of grain Zn loading differs from regulation of Zn loading to other organs. A milling test on seeds of Baxiludao and Handao502 showed that when ZnMC in brown rice increased from 13 to 45 mg kg?1, ZnMC in polished rice grains (endosperm) also increased from 9 to 37 mg kg?1 but remained three to five times lower than that in the bran. Irrespective of the ZnMC in the brown rice, around 75% of total grain Zn was present in the endosperm. In both cultivars, there was a major difference in ZnMC between bran and endosperm (120 and 37 mg kg?1, respectively), suggesting a barrier for Zn transport between the two tissues. There seems to be a second barrier between stem and rachis, as their ZnMCs also differed greatly (300 and 100 mg kg?1, respectively) in both cultivars at higher plant ZnMC. It is concluded that there is too little scope from a human nutrition perspective to enhance ZnMC in rice endosperm by simply increasing the Zn supply to rice plants because Zn allocation to the endosperm is limited, while observed genotypic differences indicate scope for improvement through breeding.  相似文献   

8.
The uptake and translocation of 14C-benthiocarb labelled at benzyl methylene by rice plant, bamyardgrass, wild amaranth, smart weed and lambsquarters were investigated, 14C-Benthiocarb was absorbed through the roots and the radioactivity was translocated into whole plants. The rate of absorption and translocation varied by the kind of plants. The translocation was occurred not only from roots into leaves, but from a leaf into other leaves, and even into roots of some kinds of plant. The absorption and translocation was more easy in barnyard-grass than in rice plant. Benthiocarb was rapidly absorbed by seeds and accumulated mostly in the embryo. The uptake of benthiocarb by seedlings decreased with the order of mesocotyl (bamyardgrass only), coleoptyl, root and leaf. Benthiocarb was degraded rapidly in plants.  相似文献   

9.
The weight of alfalfa plants, especially roots of susceptible strain, decreased when inoculated withCorynebacterium insidiosum. At the 6th week after inoculation the32P uptake per plant and its translocation into the above-ground organs were considerably decreased in susceptible plants. On the other hand, the32P uptake was increased and the radiophosphorus was accumulated in above-ground organs in resistant plants.  相似文献   

10.
Summary The absorption and transport of Cu were studied in perennial ryegrass grwon on 21 soils under controlled environment conditions. Neither the concentration, nor the total amount, of Cu in the shoots was related to available Cu in the soils as assessed by extraction with 0.05M EDTA, 0.005M DTPA, or 1.95 per cent HNO3. The concentration in the roots and, more especially, absorption per unit weight of root (i.e. μg Cu g dry wt−1) were, however, highly correlated with available soil Cu. This suggests that, unless the extent of exploitation of the soil by roots is taken into account, measurements of available Cu will not be effective in predicting uptake by plants. On average, 63 per cent of the Cu absorbed by the roots was retained in the roots, and variation in the proportion retained was related to the transport of nitrogen from roots to shoots. On some soils the concentrations of N and Cu in the shoots were significantly correlated, and variation in N concentration accounted for a considerable proportion of the variance in the Cu concentration at later harvests. The relative importance of the measured soil (pH, organic matter) and plant (dry weight, N content) factors changed markedly over 6 successive harvests.  相似文献   

11.

Background and Aims

Zn imported into developing cereal grains originates from either de novo Zn uptake by the roots or remobilization of Zn from vegetative tissues. The present study was focused on revealing the quantitative importance of the two pathways for grain Zn loading and how their relative contribution varies with the overall plant Zn status.

Methods

The stable isotope 67Zn was used to trace Zn uptake and remobilization fluxes in barley (Hordeum vulgare L.) plants growing in hydroponics at 0.1?μM (low Zn), 1.5?μM (medium Zn) or 5?μM Zn (high Zn). When grain development reached 15?days after pollination the Zn source was changed to an enriched 67Zn isotope and plants were harvested after 6 to 48?h. Zn concentrations and isotope ratios were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).

Results

Plants with low Zn status absorbed 3-fold more Zn than plants with medium or high Zn status when roots were exposed to an external concentration of 1.5?μM 67Zn. Stems and ears were the primary recipients of the de novo incorporated Zn with preferential allocation to the developing grains over time. The leaves received in all cases a very small proportion (<5?%) of the newly absorbed Zn and the proportion did not increase over time. Zn fluxes derived from uptake and remobilization were almost equal in plants with low Zn status, while at high Zn status remobilization delivered 4 times more Zn to the developing grains than did root Zn uptake.

Conclusions

Stable isotopes in combination with ICP-MS provided a strong tool for quantification of Zn fluxes in intact plants. The importance of Zn remobilization compared to de novo root absorption of Zn increased with increasing plant Zn status. Very little de novo absorbed Zn was translocated to the leaves during generative growth stages.  相似文献   

12.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

13.
Yang X  Li T  Yang J  He Z  Lu L  Meng F 《Planta》2006,224(1):185-195
Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 μM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 μM for 48 h. At 1,000 μM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.  相似文献   

14.
A laboratory and greenhouse investigation was undertaken to study the distribution and contribution of zinc fractions to available zinc in submerged rice. Most of the total zinc was present as Al- and Fe-oxide bound (52.8%) and residual zinc (27.8%). The exchangeable (non-specifically and specifically absorbed), organically bound and Mn-oxide bound zinc fractions averaged 0.7, 1.1, 6.3 and 4.9 per cent of the total zinc, respectively. 0.1 M HCl, EDTA-(NH4)2CO3 and dithizone extractants showed significant correlation with per cent yield, Zn concentration and zinc uptake by grain and the critical limits were 3.0, 1.9 and 1.0 µg–1, respectively. Organically bound zinc exhibited significant correlation with per cent yield and zinc uptake by grain whereas specifically absorbed zinc correlated with Zn concentration in grain. Mn-oxide boudn zinc and Al- and Fe-oxide bound zinc fractions were also correlated with zinc concentration and zinc uptake by grain.  相似文献   

15.
Summary The effects of zinc application on zinc uptake, distribution and translocation in maize and barley grown in zinc deficient soil with high pH and high calcium content were studied. Zn65 content and uptake in roots, sheaths and blades of maize and barley plants increased significantly with increased levels of zinc application. The sheaths contained highest Zn65 content followed by roots and blades. The distribution of total zinc, however, differed from that of radioactive zinc. The roots had the highest zinc content, followed by sheaths and blades. The two species differed very little in zinc distribution patterns. The autoradiographs of intact maize and barley plants showed that Zn65 was fairly evenly distributed in the main and auxiliary roots, but, there was a relatively higher concentration at the root-stem junction. The Zn65 concentration was higher in nodes than in internodes, and in young emerging leaves compared to older leaves. re]19730819 Institute of Soil Science and Isotope Laboratory Agricultural University of Norway  相似文献   

16.
Higher32P uptake per plant was found in the healthy resistant (R) alfalfa (Medicago saliva L.) plants when compared with the healthy plants susceptible (S) to the bacterial wilt, following the exposure of the roots of intact plants to the radiophosphate solution. The bacterial infection markedly decreased32P uptake and radioactivity levels per dry matter in most organs of the R-plants on the day 8 and 14 after inoculation withCorynebacterium insidiosum whereas in the S-plants a decrease in32P uptake was only found on the day 8.32P leakage rate from the infected R-plant roots to the nonradioactive nutrient solution was higher than from the healthy ones on the day 8. At the same time32P content in the organic P fraction was somewhat increased due to the infection in the R-plant roots, whereas32P content in DNA was decreased. After foliar application,32P distribution pattern was similar in the tissues of both the S- and the R-plants and was not affected due to the infection in the course of the 3rd week after inoculation. However, the bacterial infection markedly increased32P translocation from the primary leaf to the rest of the R-plant. An erratum to this article is available at .  相似文献   

17.
The accumulation of heavy metals by plants determines both the micronutrient content and the toxic metal content of our food. A field survey of higher terrestrial plants growing on a metalliferous site of the Iranian arid mountain in Isfahan was conducted to identify species accumulating exceptionally large concentrations of Zn and Ni in shoots and roots. Plant samples were collected from Irankoh areas near the Bama Pb and Zn mine. Sampling was carried out in Spring 2004 and analyzed for DTPA (Diethylene triamine pentaacetic acid) extractable Zn and Ni by atomic absorption spectrophotometry. Mean total and available Zn in the studied soils were 259.7 μgg?1 and 5.067 μgg?1, respectively. Soil total and available Ni were relatively low (58.9 μgg?1 and 0.143 μgg?1 respectively). Zinc concentrations were considerably high in shoots of Stachys inflate, Ebenus stellata, and Astragalus glaucanthus (556.88, 508.8, and 449.53 μgg?1, respectively). Nickel concentrations were markedly high in shoots of Teucrium polium, Alyssum bracteatum, and Ebenus stellata (13.21, 10.98, and 8.84 μgg?1, respectively). Zinc translocation factor (TF or shoot/root concentration ratio) was higher than Ni TF in most plant species. Zinc and Ni enrichment factors and shoot/root concentration ratios were also significantly high in Stachys inflate, Ebenus stellata, Astragalus glaucanthus Teucrium polium, Stipa barbata, Bromus tectorum, and Alyssum bracteatum. Results suggest that these plants could be good candidates for use in the revegetation and phytoremediation of Zn and Ni contaminated lands in arid regions.  相似文献   

18.
Cotton (Gossypium hirsutum L. cv. Deltapine 15/21) plants were precultured for 19 to 25 days under controlled climatic conditions in nutrient solutions with different levels of Zn. With the onset of visual Zn-deficiency symptoms the pH of the nutrient solution decreased from 6.0 to about 5.0. In contrast, Zn-sufficient plants raised the pH of the nutrient solution to about 7.0. In short-term studies it could be demonstrated that the Zn nutritional status of the plants remarkably influenced the uptake and translocation rates of mineral nutrients. Compared to Zn-sufficient plants, P uptake rate in severely Zn-deficient plants was increased by a factor of 2 to 3, whereas the uptake rates of K, Ca and particularly NO3 decreased. The accumulation of P in the roots of Zn-deficient plants was either not affected or even lower than in Zn-sufficient plants. Thus, Zn deficiency had a specific enhancement effect on root to shoot transport of P. This enhancement effect of Zn deficiency on uptake and transport of P was similar at nutrient solution pH values of 7.0 and 5.8; i.e. it was not the result of acidification of the nutrient solution. After application of 36CI, 86Rb and 32P to plant stems, basipetal transport of 36CI and 86Rb was not affected by the Zn nutritional status of the plants. However, in Zn-deficient plants, only 7.8% of the 32P was translocated basipetally compared to 34% in the Zn-sufficient plants. A resupply of Zn for 19 h to Zn-deficient plants enhanced basipetal 32P transport. The results indicate that a feedback mechanism in the shoots is impaired in Zn-deficient plants which controls the P uptake by roots and especially the P transport from roots to shoots. As a result of this impairment toxic concentrations of P accumulate in the leaves. The mechanism responsible is likely the retranslocation of P in the phloem from shoots to roots.  相似文献   

19.
Zinc (Zn) is an essential micronutrient required for growth and development of all organisms. Deficiency of Zn in humans is widespread, affecting 25% of world population and efforts are underway to develop crop plants with high levels of Zn in their edible parts. When strategies for enhancing Zn in crop plants are designed, it is essential to exclude cadmium (Cd), a toxic analogue of Zn. In the present work, a high affinity and high specificity zinc transporter gene (tzn1) from Neurospora crassa was cloned and introduced into Nicotiana tabacum with the objective of enhancing the potential of plants for zinc acquisition. When grown in hydroponic medium spiked with 65Zn, transgenic plants showed enhanced accumulation of Zn (up to 11 times) compared to control plants, which was confirmed further by environmental scanning electron microscopy coupled with Energy Dispersive X‐ray analysis. More importantly, no significant difference in uptake of Cd2+, Fe2+, Ni2+, Cu2+, Mn2+ and Pb2+ between the transgenic and control plants was observed. The present studies have shown that Neurospora crassa tzn1 is a potential candidate gene for developing transgenic plants for improving Zn uptake, without co‐transport of Cd and may have implications in Zn phytofortification and phytoremediation.  相似文献   

20.
Abstract

Uptake of metals by whole Eichhornia crassipes plants and excised roots was studied using a bioassay system. Results indicate that in time-series bioassay at concentration of 10 mg L?1 of either Zn or Cu, rapid uptake by whole plants occurred during the first 4 h, but subsequently levelled off after 48 h. A greater proportion of metals absorbed remain in the root system rather than being translocated to other parts of plant. When treated with different combinations of both Cu and Zn, some synergistic effect of metals appeared to have occurred as indicated by enhanced uptake when bioassays involved combination of metals. Absorption kinetics of monovalent K+ by excised Eichhornia roots after a 24-h treatment, indicated an initial linear trend over the range of 1–10 mg K L?1, but subsequently levelled off at 15 mg K L?1 concentration with Vmax of 7.5 × 10–6 M K g?1 dry tissue h?1 and Km of 1.1 × 10?3 M K. Potentiometric titrations revealed existence of pH-dependent charge densities on root system which have variable affinities for cations and helps explain the ability of Eichhornia roots to absorb and accumulate large amounts of metal ions especially at high pH of media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号