首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

3.
Acceptors of poly(ADP-ribosylation) were identified and compared between inducer-treated and untreated Friend erythroleukemia cells. When permeabilized Friend cells were pulse labeled with 0.6 μM [32P]NAD for 1 min and labeled proteins analyzed by SDS-polyacrylamide gel electrophoresis, nucleosome core histones were found to be the primary acceptors, with an additional minor radioactive peak at a position corresponding to Mr = 170 000. Friend cells induced to differentiate by DMSO treatment showed a similar distribution of radioactivity, but with a 60% reduction in the overall level of poly(ADP-ribosylation) under identical labeling conditions. When isolated nuclei were pulse labeled with 0.6 μM [32P]NAD, radioactive peaks were not restricted mainly at the positions of core histones but widely dispersed in the area from 10 to 50 kDa with another peak at 170 kDa. Increase of NAD concentration resulted in the overall shift of peaks to higher molecular weight positions. When pulse-labeled nuclei or permeable cells were chased with 1 mM NAD, radioactive peaks migrated to positions of very high molecular weight (>Mr = 180 000). Remarkable suppression of poly(ADP-ribose) synthesis was observed when DMSO, hexamethylene bisacetamide, butyric acid, or hemin were used as the inducers.  相似文献   

4.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

5.
Human PARP family consists of 17 members of which PARP-1 is a prominent member and plays a key role in DNA repair pathways. It has an N-terminal DNA-binding domain (DBD) encompassing the nuclear localisation signal (NLS), central automodification domain and C-terminal catalytic domain. PARP-1 accounts for majority of poly-(ADP-ribose) polymer synthesis that upon binding to numerous proteins including PARP itself modulates their activity. Reduced PARP-1 activity in ageing human samples and its deficiency leading to telomere shortening has been reported. Hence for cell survival, maintenance of genomic integrity and longevity presence of intact PARP-1 in the nucleus is paramount. Although localisation of full-length and truncated PARP-1 in PARP-1 proficient cells is well documented, subcellular distribution of PARP-1 fragments in the absence of endogenous PARP-1 is not known. Here we report the differential localisation of PARP-1 N-terminal fragment encompassing NLS in PARP-1+/+ and PARP-1−/− mouse embryo fibroblasts by live imaging of cells transiently expressing EGFP tagged fragment. In PARP-1+/+ cells the fragment localises to the nuclei presenting a granular pattern. Furthermore, it is densely packaged in the midsections of the nucleus. In contrast, the fragment localises exclusively to the cytoplasm in PARP-1−/− cells. Flourescence intensity analysis further confirmed this observation indicating that the N-terminal fragment requires endogenous PARP-1 for its nuclear transport. Our study illustrates the trafficking role of PARP-1 independently of its enzymatic activity and highlights the possibility that full-length PARP-1 may play a key role in the nuclear transport of its siblings and other molecules.  相似文献   

6.
Peroxynitrite, a cytotoxic oxidant formed in the reaction of superoxide and nitric oxide is known to cause programmed cell death. However, the mechanisms of peroxynitrite-induced apoptosis are poorly defined. The present study was designed to characterize the molecular mechanisms by which peroxynitrite induces apoptosis in HL-60 cells, with special emphasis on the role of caspases. Peroxynitrite induced the activation of apopain/caspase-3, but not ICE/caspase-1 as measured by the cleavage of fluorogenic peptides. Considering the short half-life of peroxynitrite and the kinetics of caspase-3 activation (starting 3–4 h after peroxynitrite treatment), the enzyme is not likely to become activated directly by the oxidant. Caspase-3 activation proved to be essential for DNA fragmentation, because pretreatment of the cells with the specific tetrapeptide inhibitor DEVD-fmk completely blocked peroxynitrite-induced DNA fragmentation. Peroxynitrite-induced cytotoxicity was also significantly altered by the inhibition of caspase-3, whereas phosphatidylserine exposure was unaffected by DEVD-fmk treatment. Because many of the effects of peroxynitrite are mediated by poly(ADP-ribose) synthetase (PARS) activation, we have also investigated the effect of PARS-inhibition on peroxynitrite-induced apoptosis. We have found that PARS-inhibition modulates peroxynitrite-induced apoptotic DNA fragmentation in the HL-60 cells. The effect of the PARS inhibitors, 3-aminobenzamide and 5-iodo-6-amino-1,2-benzopyrone were dependent on the concentration of peroxynitrite used. While PARS-inhibition resulted in increased DNA-fragmentation at low doses (15 μM) of peroxynitrite, a decreased DNA-fragmentation was found at high doses (60 μM) of peroxynitrite. PARS inhibition negatively affected viability as determined by flow cytometry. These data demonstrate the crucial role of caspase-3 in mediating apoptotic DNA fragmentation in HL-60 cells exposed to peroxynitrite.  相似文献   

7.
Apoptosis induced by high concentrations of nicotinamide in tobacco suspension cells was observed. When cells were treated with 250 mM nicotinamide for 24 h, the hallmarks of apoptosis were detected, including DNA fragments increasing in size by multiples of 180–200 bp, condensation and peripheral distribution of nuclei chromatin and positive reaction to the TUNEL assay. In addition, the degradation of poly (ADP-ribose) polymerase (PARP) was also detected. This indicates that caspase-3-like activity is involved in apoptosis in cultured tobacco cells induced by high-concentration nicotinamide. However, as an inhibitor of PARP, nicotinamide has a contrary effect on apoptosis at low concentrations, which suggests that nicotinamide plays a dual role depending on to its concentration in cells.  相似文献   

8.
9.

Background

Episodic cessation of airflow during sleep in patients with sleep apnea syndrome results in intermittent hypoxia (IH). Our aim was to investigate the effects of IH on cerebellar granule cells and to identify the mechanism of IH-induced cell death.

Methods

Cerebellar granule cells were freshly prepared from neonatal Sprague-Dawley rats. IH was created by culturing the cerebellar granule cells in the incubators with oscillating O2 concentration at 20% and 5% every 30 min for 1-4 days. The results of this study are based on image analysis using a confocal microscope and associated software. Cellular oxidative stress increased with increase in IH. In addition, the occurrence of cell death (apoptosis and necrosis) increased as the duration of IH increased, but decreased in the presence of an iron chelator (phenanthroline) or poly (ADP-ribose) polymerase (PARP) inhibitors [3-aminobenzamide (3-AB) and DPQ]. The fluorescence of caspase-3 remained the same regardless of the duration of IH, and Western blots did not detect activation of caspase-3. However, IH increased the ratio of apoptosis-inducing factor (AIF) translocation to the nucleus, while PARP inhibitors (3-AB) reduced this ratio.

Results

According to our findings, IH increased oxidative stress and subsequently leading to cell death. This effect was at least partially mediated by PARP activation, resulting in ATP depletion, calpain activation leading to AIF translocation to the nucleus.

Conclusions

We suggest that IH induces cell death in rat primary cerebellar granule cells by stimulating oxidative stress PARP-mediated calpain and AIF activation.  相似文献   

10.
11.
To analyze the temporal relationship of poly(adenosine diphosphate [ADP]-ribosylation) signal with DNA replication and cell divisions, the effect of 3 aminobenzamide (3ABA), an inhibitor of the poly(ADP-ribose)synthetase, was determined in vivo during the first cleavage division of sea urchins. The incorporation of 3H-thymidine into DNA was monitored and cleavage division was examined by light microscopy. The poly(ADP-ribose) neosynthesized on CS histone variants was measured by labeling with 3H-adenosine during the two initial embryonic cell cycles and the inhibitory effect of 3ABA on this poly(ADP-ribosylation) was determined. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) de novo during the initial cell cycles of embryonic development. The synthesis of poly(ADP-ribose) is decreased but not abolished by 20 mM of 3ABA. The incubation of zygotes in 3ABA at the entrance into S1 phase decreased 3H-thymidine incorporation into DNA in phase S2, while S1 was unaltered. Alternatively, when the same treatment was applied to zygotes at the exit of S1 phase, a block of the first cleavage division and a retardation of S2 phase were observed. The inhibitory effect of 3ABA on both DNA replication and cell division was totally reversible by a release of the zygotes from this inhibition. Taking together these observations it may be concluded that the poly(ADP-ribosylation) signals related to embryonic DNA replication are not contemporaneous with S phase progression but are a requirement before its initiation. These results also indicate that a poly(ADP-ribosylation) signal is required for cell division; such signal is temporally different from that related to S phase initiation and occurs at the exit of S phase. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Poly(ADP-ribose) polymerase associated with free cytoplasmic messenger ribonucleoprotein particles (free mRNP particles) carrying messenger RNA has been characterized in rat brain. There were first-order kinetics for NAD with an apparent Km for NAD of 90.5 +/- 0.70 microM and Vmax of 19.7 +/- 2.8 pmol ADP-ribose incorporated min-1 mg protein-1. Five poly(ADP-ribose) protein acceptors were identified in the Mr 37,000-120,000 range. It is hypothesized that ADP-ribosylation of specific free mRNP proteins might play a role in the derepression and translation of the silent mRNAs of free mRNP particles.  相似文献   

13.
Activation of an over-expressed mutant form of the tumour suppressor protein p53 has been shown to inhibit protein synthesis. To determine whether this effect is due only to high level expression or the mutant nature of the protein, we have used a doxycycline-inducible lung carcinoma cell line capable of expressing wild-type p53. We now show that levels of wild-type p53 similar to those expressed endogenously also inhibit protein synthesis. The mechanism involves dephosphorylation and accumulation of the translational inhibitor 4E-BP1, and increased association of 4E-BP1 with initiation factor eIF4E. The inhibition of translation is not a consequence of p53-mediated apoptosis.  相似文献   

14.
Our previous studies indicated that exogenous α-synuclein (ASN) activates neuronal nitric oxide (NO) synthase (nNOS) in rat brain slices. The present study, carried out on immortalized hippocampal neuronal cells (HT22), was designed to extend the previous results by showing the molecular pathway of NO-mediated cell death induced by exogenous ASN. Extracellular ASN (10 μM) was found to stimulate nitric oxide synthase (NOS) and increase caspase-3 activity in HT22 cells, leading to poly(ADP-ribose) polymerase (PARP-1) cleavage. The inhibitor of Ca2+-dependent NOS (N-nitro-l-arginine, 100 μM) prevented ASN-evoked caspase-3 activation and PARP-1 degradation. ASN exposure resulted in apoptotic death of HT22 cells and this effect was reversed by inhibition of NO synthesis and caspase-3 activity. Our results demonstrated that extracellular ASN induces neuronal cell death by NO-mediated caspase-3 activation.  相似文献   

15.
Abstract

Human poly(ADP-ribose)polymerase (PARP) was expressed in the yeast line JELl under the control of a GAL promoter. Proteins were extracted and human recombinant PARP purified to apparent homogeneity. The pharmacological profile of this human enzyme was characterised in terms of the effects of known inhibitors of PARP belonging to various chemical families and this was compared with that of the rat enzyme purified from rat testes. using the same purification protocol. The rat and the human enzymes appeared very similar in terms of their sensitivities to those selected inhibitors.  相似文献   

16.
Spermidine and spermine at submillimolar concentrations stimulate the rate of incorporation of amino acid into protein in a cell-free system, directed either by endogenous or exogenous mRNA (TMV, globin). The stimulatory effects of these polyamines are exerted at both the stages of initiation and elogation and are more pronounced in the case of TMV or globin mRNA, amounting to approximately 2.3-fold stimulation over the polyamine-free system. The number of polysomes and the polysome-associated radioactivity increase approximately 2-fold in the presence of spermine. Synthesis of large polypeptides is a characteristic feature of the stimulatory event. However, elevated concentrations of spermidine and spermine strongly inhibit amino acid incorporation into protein. Inhibition is manifest at the stage of peptide elongation. In the case of endogenous mRNA the addition of an excess of polyamines results in a non uniform inhibition of amino acid incorporation. A most interesting finding is that, with increasing concentrations of polyamines, the intensity of four bands with Mr values of 63000, 44000, 15500 and 12500 respectively, increases or leastwise remains constant while others fade, indicading differential translation of proteins in the presence of polyamines.  相似文献   

17.
Infection of 13 month-old C3H mice with EMC virus or inoculation with the interferon inducer poly(I)poly(C) results in elevated levels of the enzyme 2',5' oligo(A) synthetase only in animals with spontaneous tumors (breast cancer or hepatomas). High enzymatic activities are detected in homogenates from liver, spleen, plasma and neoplastic cells of the animals with breast carcinomas and only in the neoplastic liver cells of the animals with hepatomas.  相似文献   

18.
(R,R)‐formoterol was synthesized in seven steps with 4‐hydroxyl‐3‐nitro‐acetophenone as the starting material. The key intermediate, the chiral secondary alcohol 4 , was prepared via Rh‐catalyzed asymmetric transfer hydrogenation with (S,S)‐PEGBsDPEN as the ligand and sodium formate as the hydrogen donor under mild conditions. With a mixture of PEG 2000 and water as the reaction media, the catalyst system could be recycled four times. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Stepwise synthetic assembly of polypeptide chains reversibly linked to polyethylene glycol represents a hybrid between traditional solution and solid-phase chemistries and combines the inherent advantages of both approaches. The technical simplicity and scalability of the liquid-phase peptide synthesis method renders it particularly attractive for multiple parallel syntheses, combinatorial approaches and the large-scale preparation of peptides. The versatile protection strategy based on the N alpha-fluorenylmethoxycarbonyl group commonly used in solid-phase peptide synthesis was adapted to the liquid-phase approach. Fluoride ions were used rather than the conventional organic base piperidine for the repetitive amino-deprotection step. Using a range of acid- and base-labile linkers between the polymer and the peptide, it was shown that free and fully side-chain protected peptides can be obtained using our version of the liquid-phase peptide synthesis method. Protocols for simultaneous multiple syntheses requiring a minimum of equipment are presented and the use of polyethylene glycol-bound peptides in biochemical binding and functional assay systems is demonstrated.  相似文献   

20.
Aphidicolin, a potent and specific inhibitor of eukaryotic DNA polymerase α, has been reported to inhibit repair DNA synthesis in ultraviolet-irradiated, normal human fibroblasts but not in HeLa cells. By the use of assays for repair other than the measurement of repair synthesis, it is shown here that repair in HeLa cells is in fact susceptible to aphidicolin. Severe inhibition of DNA repair, with failure of individual repair events to be completed, and a smaller number of lesions removed, can occur even though repair synthesis continues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号