首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-O-[3H]Alkyl-2-acetyl-sn-glycero-3-phosphocholine ([3H]PAF) and 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine ([3H]lyso-PAF) when incubated with rat polymorphonuclear leukocytes (PMN) were rapidly metabolized to 1-O-[3H]alkyl-2-acyl-sn-glycero-3-phosphocholine ([3H]alkyl-acyl-GPC) containing long chain acyl groups in the sn-2 position. The specificity and the absolute requirements of arachidonate (20:4) for acylation into PAF and lyso-PAF were investigated by comparing the rate of [3H]PAF and [3H]lyso-PAF metabolism by control rat PMN with that by rat PMN depleted of 20:4. Comparable rates of metabolism of [3H]PAF and [3H]lyso-PAF by both control and 20:4-depleted PMN were observed at all the concentrations of PAF and lyso-PAF studied. The nature of the fatty acyl group incorporated into the sn-2 position of the [3H]alkyl-acyl-GPC formed was analyzed by argentation chromatography. Dienoic fatty acids were the major fatty acid incorporated into the alkyl-acyl-GPC by both control and 20:4-depleted PMN at all the incubation times studied. At 3 min of incubation with [3H]PAF and [3H]lyso-PAF, control PMN had small but significant amounts of [3H]alkyl-acyl-GPC containing tetraenoic fatty acids, the concentration of which gradually increased as the incubation time progressed. On the other hand, under similar conditions, 20:4-depleted PMN had only trace amounts of the [3H]alkyl-acyl-GPC with tetraenoic fatty acid and the concentration of which remained at the low level throughout the incubation time. At 3 min of incubation, the 20:4-depleted PMN had small but significant amounts of [3H]alkyl-acyl-GPC with saturated fatty acids, the amount of which declined by 10 min and remained at that level as the incubation time progressed. While the concentration of [3H]alkyl-acyl-GPC with dienoic fatty acids in the 20:4-depleted cells gradually increased with the progress of incubation time, these molecular species of GPC in the control PMN remained more or less constant. In spite of a very high concentration (equivalent to that of 20:4 in control PMN) of eicosatrienoic acid (20:3 delta 5,8,11) in the 20:4-depleted PMN, no significant amounts of [3H]alkyl-acyl-GPC with trienoic fatty acid were formed by these cells. The rate of metabolism of [3H]PAF and [3H]lyso-PAF by the resident macrophages isolated from control and 20:4-depleted rats was similar.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Neutral sphingomyelinase (N-SMase) is one of the key enzymes involved in the generation of ceramide; however, the gene(s) encoding for the mammalian N-SMase is still not well defined. Previous studies on the cloned nSMase1 had shown that the protein acts primarily as lyso-platelet-activating factor-phospholipase C. Recently the cloning of another putative N-SMase, nSMase2, was reported. In this study, biochemical characterization of the mouse nSMase2 was carried out using the overexpressed protein in yeast cells in which the inositol phosphosphingolipid phospholipase C (Isc1p) was deleted. N-SMase activity was dependent on Mg(2+) and was activated by phosphatidylserine and inhibited by GW4869. The ability of nSMase2 to recognize endogenous sphingomyelin (SM) as substrate was investigated by overexpressing nSMase2 in MCF7 cells. Mass measurements showed a 40% decrease in the SM levels in the overexpressor cells, and labeling studies demonstrated that nSMase2 accelerated SM catabolism. Accordingly, ceramide measurement showed a 60 +/- 15% increase in nSMase2-overexpressing cells compared with the vector-transfected MCF7. The role of nSMase2 in cell growth was next investigated. Stable overexpression of nSMase2 resulted in a 30-40% decrease in the rate of growth at the late exponential phase. Moreover, tumor necrosis factor induced approximately 50% activation of nSMase2 in MCF7 cells overexpressing the enzyme, demonstrating that nSMase2 is a tumor necrosis factor-responsive enzyme. In conclusion, these results 1) show that nSMase2 is a structural gene for nSMase, 2) suggest that nSMase2 acts as a bona fide N-SMase in cells, and 3) implicate nSMase2 in the regulation of cell growth and cell signaling.  相似文献   

3.
The metabolism of platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine) and 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol was studied in cultures of human umbilical vein endothelial cells. Human endothelial cells deacetylated 1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine to the corresponding lyso compound (1-[1,2-3H]alkyl-2-lyso-sn-glycerol-3-phosphocholine) and a portion was converted to 1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine. Lyso platelet activating factor (lyso-PAF) (1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine) was detected in the media very early during the incubation and the amount remained higher than the level of the lyso product observed in the cells. Cellular levels of 1-[1,2-3H]alkyl-2-lyso-sn-glycero-3-phosphocholine were significantly higher than the acylated product (1-[1,2-3H]alkyl-2-acyl(long-chain)-sn-glycero-3-phosphocholine) at all times during the 60-min incubation period, which suggests that the ratio of acetylhydrolase to acyltransferase activities is greater in endothelial cells than in most other cells. When endothelial cells were incubated with 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol, a known precursor of PAF, 1-[1,2-3H]alkyl-sn-glycerol was the major metabolite formed (greater than 95% of the 3H-labeled metabolites during 20- and 40-min incubations). At least a portion of the acetate was removed from 1-[1,2-3H]alkyl-2-acetyl-sn-glycerol by a hydrolytic factor released from the endothelial cells into the medium during the incubations. Only negligible amounts of the total cellular radioactivity (0.2%) was incorporated into platelet activating factor (1-[1,2-3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine); therefore, it is unlikely that the previously observed hypotensive activity of 1-alkyl-2-acetyl-sn-glycerols can be explained on the basis of the conversion to platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) by endothelial cells. Results of this investigation indicate that endothelial cells play an important role in PAF catabolism. Undoubtedly, the endothelium is important in the regulation of PAF levels in the vascular system.  相似文献   

4.
1-Alkyl-2-acetyl-sn-glycero-3-phosphocholine (alkylacetyl-GPC; platelet-activating factor; PAF) is actively taken up and metabolized by rat alveolar macrophages maintained in culture. The major metabolic products are lyso-PAF (alkyllyso-GPC) and alkylacyl-GPC. Lyso-PAF accumulates primarily in the media, whereas alkylacyl-GPC is predominantly associated with cellular lipids. The addition of unlabeled lyso-PAF to incubations initiated with [3H]PAF results in an increase in the amount of lyso-[3H]PAF product formed and a decrease in the final product, [3H]alkylacyl-GPC; however, the total amount of [3H]PAF metabolized remains unchanged. Unlabeled lyso-PAF thus enters the metabolic pool of the cell and competes with the deacetylated product of [3H]PAF, i.e., lyso-PAF, for acylation. High-performance liquid chromatography demonstrated that the reacylated product derived from lyso-PAF consisted primarily of the arachidonoyl-containing species that exists as the 16:0-20:4 molecular species. These results document that PAF is inactivated in rat alveolar macrophages via a deacetylation-reacylation reaction with lyso-PAF as an obligatory intermediate. The sequestering of arachidonic acid into the PAF precursor pool and the substantial amount of lyso-PAF secreted by macrophages into the extracellular fluid appear to be significant events in the inactivation process.  相似文献   

5.
Treatment of Ehrlich ascites cells with 2 mM oleic acid causes a greater than 10-fold increase in the formation of platelet-activating factor (PAF; 1-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine) from the de novo precursor of PAF, 1-[3H]alkyl-2-acetyl-sn-glycerol. Under these conditions, CTP:phosphocholine cytidylyltransferase activity, which is known to catalyze the rate-limiting step in phosphatidylcholine biosynthesis, was stimulated 32% (p less than 0.001) over control cells. Surprisingly, the dithiothreitol-insensitive choline-phosphotransferase activity, which catalyzes the final step in PAF biosynthesis, was reduced approximately 95% in membranes isolated from cells that were pre-treated with 2 mM oleic acid. However, calculations of product formation at this reduced cholinephosphotransferase activity revealed that it was still sufficient to accommodate the increased synthesis of PAF observed in the intact oleic acid-treated cells. Kinetic studies and experiments done with cells treated with phenylmethylsulfonyl fluoride (an acetylhydrolase inhibitor) indicate the various metabolic products formed are derived through the following sequence of reactions: 1-alkyl-2-acetyl-sn-glycerol----1-alkyl-2-acetyl-sn-glycero-3- phosphocholine----1-alkyl-2-lyso-sn-glycero-3-phosphocholine----1-alkyl- 2(long-chain) acyl-sn-glycero-3-phosphocholine. These results indicate PAF is the source of alkylacylglycerophosphocholine through the action of an acetylhydrolase and a transacylase as shown in other cell systems. The relative amounts of PAF, lyso-PAF, and alkylacylglycerophosphocholine produced after treatment of the cells with oleic acid in the absence of the phenylmethylsulfonyl fluoride inhibitor indicate that the acylation rate for lyso-PAF is considerably slower (i.e. rate-limiting) than the deacetylation of PAF by acetylhydrolase. We further conclude that the final step in the de novo pathway for PAF biosynthesis is under the direct control of CTP:phosphocholine cytidylyltransferase, which emphasizes the importance of this regulatory (rate-limiting) step in the biosynthesis of both phosphatidylcholine and PAF.  相似文献   

6.
Sodium nitroprusside (SNP), a NO donor, has been recognized as an inducer of apoptosis in various cell lines. Here, we demonstrated the intracellular formation of ceramide, a lipid signal mediator, in SNP-induced apoptosis in human leukemia HL-60 cells and investigated the mechanisms of ceramide generation. The levels of intracellular ceramide increased to, at most, 160% of the control level in a time- and dose-dependent manner when the cells were treated with 1 mM SNP. SNP also decreased the sphingomyelin level to approximately 70% of the control level and increased magnesium-dependent neutral sphingomyelinase (N-SMase) activity to 160% of the control activity 2 h after treatment. Neither acid SMase nor magnesium-independent N-SMase was affected by SNP. Caspases are thought to be key enzymes in apoptotic cell death. Acetyl-Asp-Glu-Val-Asp-aldehyde, a synthetic tetrapeptide inhibitor of caspases, inhibited magnesiumdependent N-SMase, ceramide generation, and apoptosis. Moreover, recombinant purified caspase-3 increased magnesium-dependent N-SMase in a cell-free system. These results suggest that the findings that SNP increased ceramide generation and magnesium-dependent N-SMase activity via caspase-3 are interesting to future study to determine the relation between caspases and sphingolipid metabolites in NO-mediated signaling.  相似文献   

7.
The remodeling pathway for the biosynthesis of platelet-activating factor (PAF) consists of the following reaction sequence: alkylacylglycerophosphocholine----lyso-PAF----PAF. Results presented in this article describe a novel transacylase activity that generates the lyso-PAF intermediate, which can then be acetylated to form PAF. Ethanolamine-containing lysoplasmalogens, 1-acyl-2-lyso-sn-glycero-3-phosphoethanolamine, alkyllysophosphoethanolamine, unlabeled lyso-PAF, 1-acyl-2-lyso-GPC, where GPC is sn-glycero-3-phosphocholine, and choline-containing lysoplasmalogens were all able to stimulate the formation of [3H]lyso-PAF from a [3H]alkylacyl-GPC precursor pool associated with HL-60 cell (granulocytic type) membranes. Other glycerolipids containing free hydroxyl groups (3-alkyl-2-lyso-sn-glycero-1-phosphocholine, lysophosphatidylserine, lysophosphatidylinositol, diacylglycerols, alkylglycerols, and monoacylglycerols), cholesterol, phosphatidylcholine, and phosphatidylethanolamine had no stimulatory effect on the release of [3H]lyso-PAF from the prelabeled membranes under identical incubation conditions. The observed transacylase reaction is directly coupled to PAF production, since the addition of a lysoethanolamine plasmalogen preparation to HL-60 membranes in the presence of [14C]acetyl-CoA stimulated PAF formation; under these conditions the lysoethanolamine plasmalogen was acylated. The transacylase responsible for the release of lyso-PAF from the membrane-associated alkylacyl-GPC was not affected by Ca2+, EGTA, or a known phospholipase A2 inhibitor, p-bromophenacyl bromide. The fact that the unnatural analog of lyso-PAF, lysophosphatidylserine, and lysophosphatidylinositol did not influence transacylase activity, whereas detergents such as deoxycholate and Triton X-100 inhibited the activity, demonstrated the observed stimulatory effects of the choline- and ethanolamine-containing lysophospholipids on the formation of [3H]lyso-PAF from [3H]alkylacyl-GPC were not due to any detergent property of these lysophospholipids. Thus, we conclude a CoA-independent transacylase (possessing phospholipase A2/acyltransferase activities) can be responsible for the formation of the lyso-PAF intermediate in the remodeling route of PAF biosynthesis.  相似文献   

8.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

9.
The uptake and metabolism of 3H-labeled platelet-activating factor by interstitial and epithelial cells from rat lungs was investigated. The uptake of 1-O-[3H]octadecyl-2-acetyl-sn-glycero-3-phosphocholine (3H-AGEPC) by alveolar type-II cells was linear with time from 5 to 60 min, with an average rate of 660 and 450 fmol/10(6) cells for cells in primary culture for 48 to 72 h, respectively. AGEPC was rapidly metabolized and by 10 min 60% of AGEPC was converted into long-chain acylphosphatidylcholine (PC) (50%) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-GEPC) (10%). By 60 min radioactivity in AGEPC was less than 10% of the total intracellular activity. Lyso-GEPC remained at about 10% throughout the incubation period. The uptake of 3H-AGEPC by fibroblasts was very similar to type II cells, but the rate of metabolism was slower. AGEPC in fibroblasts constituted 85% of the cellular counts after 10 min of incubation, and 50% by 60 min. After 60 min only 30% of the AGEPC was converted to alkylacyl-PC. Characterization of the fatty acids in the alkylacyl-PC of both the type-II cells and lung fibroblasts indicated that arachidonic acid was preferentially (more than 90%) inserted at the 2-position.  相似文献   

10.
Activation of sphingomyelinase (SMase) by extracellular stimuli is the major pathway for cellular production of ceramide, a bioactive lipid mediator acting through sphingomyelin (SM) hydrolysis. Previously, we reported the existence of six forms of neutral pH–optimum and Mg2+-dependent SMase (N-SMase) in the membrane fractions of bovine brain. Here, we focus on N-SMase ε from salt-extracted membranes. After extensive purification by 12,780-fold with a yield of 1.3%, this enzyme was eventually characterized as N-SMase2. The major single band of 60-kDa molecular mass in the active fractions of the final purification step was identified as heat shock protein 60 (Hsp60) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Proximity ligation assay and immunoprecipitation study showed that Hsp60 interacted with N-SMase2, prompting us to examine the effect of Hsp60 on N-SMase2 and ceramide production. Interestingly, Hsp60 siRNA treatment significantly increased the protein level of N-SMase2 in N-SMase2-overexpressed HEK293 cells. Furthermore, transfection of Hsp60 siRNA into PC12 cells effectively increased both N-SMase activity and ceramide production and increased dopamine re-uptake with paralleled increase. Taken together, these results show that Hsp60 may serve as a negative regulator in N-SMase2-induced dopamine re-uptake by decreasing the protein level of N-SMase2.  相似文献   

11.
Intact alveolar macrophages were found to acylate alkyl- and acyllysophospholipids with a high selectivity for arachidonate. A specific mechanism appears responsible for the incorporation of arachidonate into lysophospholipids in intact cells since the kinetic pattern for the formation of the 20:4 species was different from all other species. This specificity was investigated in more detail by examining the enzymatic acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine by macrophage membranes; in the absence of CoA, ATP, and Mg2+, this lysophospholipid was acylated with a high preference for arachidonate that was independent of added free fatty acids. The addition of CoA alone increased the rate of acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine, mainly due to an increase in the formation of species other than those containing arachidonate. When CoA, ATP, and Mg2+ were present, the macrophage membranes catalyzed the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine without preference for arachidonate. A different apparent Km and Vmax was observed for reactions involving each cofactor condition. We conclude that the acylation of alkyl- and acyllysophospholipids by rabbit alveolar macrophages occurs by three separate mechanisms: a CoA-independent transacylation, a CoA-dependent transacylation (reverse reaction catalyzed by acyl-CoA acyltransferase), and an acyl-CoA-dependent acylation. The CoA-independent transacylation reaction is unique in that it is specific for arachidonate and accounts for the selective acylation of alkyl- and acyllysophospholipids by arachidonate in membrane preparations of alveolar macrophages. This reaction appears to be extremely important in the remodeling of phospholipid molecular species and the mobilization of arachidonate into ether-linked lipids. The transfer of arachidonate to 1-alkyl-2-lyso-sn-glycero-3-phosphocholine also is of importance in the final inactivation step for platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine), whereby 1-alkyl-2-arachidonoyl-sn-glycerol-3-phosphocholine (a stored precursor of both platelet activating factor and arachidonic acid metabolites) is formed.  相似文献   

12.
Platelet-activating factor (PAF), a phospholipid mediator with broad and potent biologic activities, is synthesized by several inflammatory cells including endothelial cells (EC). PAF is also an effective stimulating agent for EC leading to increased cell permeability and adhesivity. We examined the synthesis of PAF in human umbilical cord vein EC after stimulation of EC with PAF or with its nonmetabolizable analog 1-O-alkyl-2-N-methyl-carbamyl-sn-glycero-3-phosphocholine (C-PAF). PAF (1 to 100 nM) induced a dose- and time-dependent increase of PAF synthesis as detected by [3H]acetate incorporation into PAF fraction. Stimulation of PAF synthesis occurred via activation of the "remodeling pathway" as the 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase was dose-dependently increased after PAF treatment. The de novo pathway of PAF synthesis was not activated under these conditions. C-PAF was able to mimic the effect of authentic PAF on [3H] acetate incorporation. The inactive metabolite lyso-PAF (100 nM) had no influence on PAF synthesis in EC. CV-3988, BN 52021, and WEB 2086, potent and specific antagonists of PAF suppressed PAF effects on the remodeling pathway completely. The PAF- and C-PAF-induced [3H]PAF remained 93% cell-associated and was not degraded up to 10 min after stimulation. Characterization of the [3H]acetate-labeled material co-migrating with authentic PAF revealed that a significant proportion (approximately 57%) was actually 1-acyl-2-acetyl-sn-glycero-3-phosphocholine. PAF-induced PAF synthesis might be an important mechanism for amplifying original PAF signals and potentiating adhesive interactions of circulating cells with the endothelium.  相似文献   

13.
Interleukin 1 promotes the conversion of the biologically inactive lyso-platelet activating factor (lyso-PAF) to the bioactive platelet activating factor (PAF) by an acetylation reaction in cultured human endothelial cells. After 2 h stimulation with interleukin 1, 1-O-alkyl-2-lysoglycero-3-phosphocholine (GPC): acetyl CoA acetyltransferase is activated, reaching a plateau after 6 h and then declining to the basal value within 24 h. This time course is comparable to that of PAF production. These cells are able to incorporate [3H]acetate and [3H]lyso-PAF into PAF. Synthetized [3H]PAF is then catabolized in [3H]alkylacyl phosphoglycerides. 1-O-alkyl-2-acetylglycerol: CDP-choline cholinephosphotransferase and 1-O-alkyl-2-acetyl-GPC: acetylhydrolase activities are both present in endothelial cells, but are not activated under our conditions of stimuli. These findings indicate that interleukin 1 induces the PAF synthesis by a deacylation/reacetylation mechanism into human endothelial cells.  相似文献   

14.
The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by modulating the expression of DTT-insensitive cholinephosphotransferase.  相似文献   

15.
A Ca2+-dependent lysophospholipase D activity in microsomal preparations from the rabbit kidney medulla hydrolyzes the choline moiety from 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF) to form 1-O-[9,10-3H]hexadecyl-2-lyso-sn-glycero-3-P; the latter is subsequently dephosphorylated by a phosphohydrolase to 1-O-[9,10-3H]hexadecyl-sn-glycerol. Sodium vanadate, which is known to inhibit phosphohydrolases, reduces the proportion of hexadecylglycerol and increases the formation of hexadecyl-lysoglycerophosphate. Essentially no hydrolysis occurs when the sn-2 position of the hexadecyllysoGPC substrate contains an acyl moiety. The lysophospholipase D in rabbit kidney is of microsomal origin and has a broad pH optimum between 8.0 and 8.8, with the activity decreasing sharply from pH 7.6 to 7.2. Wykle et al. (Biochim. Biophys. Acta 619 (1980) 58-67) have previously demonstrated the existence of a microsomal lysophospholipase D (specific for ether lipid substrates) in rat tissues that requires Mg2+ and exhibits a pH optimum of 7.2; high activities of the Mg2+-dependent lysophospholipase D were found in liver and brain, but not in kidney. In contrast to the Mg2+-dependent lysophospholipase D in rat tissues, the renal enzyme from rabbits requires Ca2+ (5 mM), whereas Mg2+ (5 mM) exhibits little stimulatory action. Under optimal assay conditions (0.1 M Tris-HCl (pH 8.4)/5 mM CaCl2), lysophospholipase D in the rabbit kidney medulla has an activity of 2.7 nmol/min per mg protein compared to 0.9 nmol/min per mg protein for the lysophospholipase D in the rat kidney medulla (0.1 M Tris-HCl (pH 7.2)/5 mM MgCl2). The Ca2+-dependent lysophospholipase D is highest in the liver and kidney medulla from rabbits, but is very low in rat tissues; similar activities were found in male and female rabbits. Our data indicate that the divalent metal ion requirements for expression of maximum lysophospholipase D activities can differ markedly among animal species and also suggest the microsomal Ca2+-dependent lysophospholipase D is an important catabolic route for lyso-PAF metabolism in rabbit renomedullary tissue.  相似文献   

16.
12-O-Tetradecanoylphorbol-13-acetate (TPA) treatment of Madin-Darby canine kidney cells resulted in an increased incorporation of 32Pi and [methyl-3H]choline into choline-containing phosphoglycerides (PC). In pulse-chase experiments, TPA treatment caused an increased release of [methyl-3H]choline from the PC fraction of prelabeled cells. When cells were prelabeled with [3H]arachidonic acid and [14C]palmitic acid, TPA treatment resulted in an increased synthesis of 14C, 3H-diglycerides. Further studies were done to determine the relationship between PC breakdown and diglyceride synthesis. Cells were preincubated with ether-linked 1-O-[3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine which was acylated to form 1-O-[3H]hexadecyl-2-acyl-sn-glycero-3-phosphocholine. Subsequent treatment of these cells with TPA resulted in an increased synthesis of 1-O-[3H]hexadecyl-2-acyl-sn-glycerol compared to cells not stimulated with TPA. These findings demonstrate that TPA stimulates PC turnover in Madin-Darby canine kidney cells and provide evidence for a novel mechanism of diglyceride formation.  相似文献   

17.
The metabolic fate of 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF-acether) upon interaction with primary cultured adult rat hepatocytes was investigated. [3H]PAF-acether was transformed time-dependently into [3H]lyso-PAF-acether, 1-O-[3H]alkylglycerol and finally converted to 3H-labeled fatty aldehyde. 1-O-[3H]Alkyl-2-acyl-sn-glycero-3-phosphocholine (alkylacyl-GPC) was formed after a long incubation time and with a smaller amount compared with that formed in platelets and neutrophils. When lipids from cells, cell surfaces and incubation medium were analyzed separately, most of the transformed products of [3H]PAF-acether remained in the cells. When 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine was incubated with hepatocytes, it was mainly converted into 1-O-[3H]alkylglycerol. 3H-labeled fatty aldehyde and [3H]alkylacyl-GPC were also found. Hepatocytes metabolized slowly from 1-O-[1-14C]hexadecylglycerol to 3H-labeled fatty aldehyde and 3H-labeled phospholipid. These findings suggest that cultured hepatocytes mainly catabolize exogeneous PAF-acether by removing the acetyl residue and the polar head group and, finally, by cleaving an ether bond. The deacetylation-reacylation step, which is important in platelets and neutrophils, was not shown to be a main metabolic pathway of PAF-acether in cultured hepatocytes.  相似文献   

18.
Neutral sphingomyelinases (N-SMases) are major candidates for stress-induced ceramide production. However, there is little information on the physiological regulation and roles of the cloned N-SMase enzyme, nSMase2. In this study, nSMase2 was found to translocate acutely to the plasma membrane of A549 epithelial cells in response to tumor necrosis factor alpha (TNF-alpha) in a time- and dose-dependent manner. Additionally, TNF-alpha increased N-SMase activity rapidly and transiently both endogenously and in cells overexpressing nSMase2. Furthermore, the translocation of nSMase2 was regulated by p38-alpha MAPK, but not ERK or JNK, and the increase in endogenous N-SMase activity was abrogated by p38 MAPK inhibition. In addition, both p38-alpha MAPK and nSMase2 were implicated in the TNF-alpha-stimulated up-regulation of the adhesion proteins vascular cell adhesion molecule-1 (VCAM) and intercellular adhesion molecule-1 (ICAM), but this was largely independent of NF-kappaB activation. These data reveal p38 MAPK as an upstream regulator of nSMase2 and indicate a role for nSMase2 in pro-inflammatory responses induced by TNF-alpha as a regulator of adhesion proteins.  相似文献   

19.
Platelet-activating factor (PAF), a 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a mediator of inflammation and endotoxic shock produced by a variety of stimulated cells. Since the main biosynthetic pathway of PAF involves acetylation of 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF) generated from 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine by phospholipase A2, we suggest a general physiological role played by steroid-induced anti-(phospholipase A2) proteins in the modulation of PAF synthesis. The results of the present study support this hypothesis since an androgen-induced anti-inflammatory protein, SV-IV, secreted from rat seminal vesicles, inhibits PAF synthesis in stimulated polymorphonuclear neutrophils, macrophages and endothelial cells. SV-IV impairs PAF synthesis by inhibiting the activation of phospholipase A2, that also results in the inhibition of arachidonic acid and prostacyclin release, and of acetyl-CoA:lyso-PAF acetyltransferase.  相似文献   

20.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase catalyzes the conversion of biologically inactive lysophospholipid to bioactive platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) by an acetylation reaction. The activity of this enzyme in eosinophils isolated from patients with eosinophilia is stimulated (up to 4-fold) in a dose-, time-, and Ca2+/Mg2+-dependent manner after exposure to the eosinophil chemotactic factor of anaphylaxis (ECF-A), C5a, formyl-methionylleucylphenylalanine (fMLP), or ionophore A23187. The three naturally occurring chemotactic factors (ECF-A, C5a, and fMLP) cause a rapid and transient increase of enzyme activity, with a maximum at 1 or 3 min, whereas ionophore A23187 maintains an elevated level for up to 15 min. The activity of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase, an enzyme that catalyzes the breakdown of PAF to lyso-PAF, is not affected by C5a, fMLP, or ionophore A23187. The presence of PAF in eosinophils was established by demonstrating the lipid nature of the compound, the RF value being identical with that of synthetic 1-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine on thin layer chromatograms, and by its ability to induce serotonin release from rabbit platelets. Furthermore, ECF-A, C5a, fMLP, and ionophore A23187 all induce the secretion of PAF from eosinophils. These findings suggest that the generation and release of PAF could be a consequence of eosinophil chemotactic activation and may thus function in inflammatory and allergic reactions in which eosinophils participate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号