首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to our lifestyle and the environment we live in, we are constantly confronted with genotoxic or potentially genotoxic compounds. These toxins can cause DNA damage to our cells, leading to an increase in mutations. Sometimes such mutations could give rise to cancer in somatic cells. However, when germ cells are affected, then the damage could also have an effect on the next and successive generations. A rapid, sensitive and reliable method to detect DNA damage and assess the integrity of the genome within single cells is that of the comet or single-cell gel electrophoresis assay. The present communication gives an overview of the use of the comet assay utilising sperm or testicular cells in reproductive toxicology. This includes consideration of damage assessed by protocol modification, cryopreservation vs the use of fresh sperm, viability and statistics. It further focuses on in vivo and in vitro comet assay studies with sperm and a comparison of this assay with other assays measuring germ cell genotoxicity. As most of the de novo structural aberrations occur in sperm and spermatogenesis is functional from puberty to old age, whereas female germ cells are more complicated to obtain, the examination of male germ cells seems to be an easier and logical choice for research and testing in reproductive toxicology. In addition, the importance of such an assay for the paternal impact of genetic damage in offspring is undisputed. As there is a growing interest in the evaluation of genotoxins in male germ cells, the comet assay allows in vitro and in vivo assessments of various environmental and lifestyle genotoxins to be reliably determined.  相似文献   

2.
An approach is described that enables the germ cell mutagenicity of chemicals to be assessed as part of an integrated assessment of genotoxic potential. It is recommended, first, that the genotoxicity of a chemical be defined by appropriate studies in vitro. This should involve use of the Salmonella mutation assay and an assay for the induction of chromosomal aberrations, but supplementary assays may be indicated in specific instances. If negative results are obtained from these 2 tests there is no need for the conduct of additional tests. Agents considered to be genotoxic in vitro should then be assessed for genotoxicity to rodents. This will usually involve the conduct of a bone marrow cytogenetic assay, and in the case of negative results, a genotoxicity test in an independent tissue. Agents found to be non-genotoxic in vivo are regarded as having no potential for germ cell mutagenicity. Agents found to be genotoxic in vivo may either be assumed to have potential as germ cell mutagens, or their status in this respect may be defined by appropriate germ cell mutagenicity studies. The basis of the approach, which is supported by the available experimental data, is that germ cell mutagens will be evident as somatic cell genotoxins in vivo, and that these will be detected as genotoxins in vitro given appropriate experimentation. The conduct of appropriate and adequate studies is suggested to be of more value than the conduct of a rigid set of prescribed tests.  相似文献   

3.
Lee M  Kwon J  Chung MK 《Mutation research》2003,541(1-2):9-19
The comet assay has been recently validated as a sensitive and specific test system for the quantification of DNA damage. The objectives of this study are to investigate the utility of comet assay for detecting mutagens with 11 substances that demonstrated positive results in at least one test among four standard short-term genotoxicity tests, and to evaluate its ability to predict rodent carcinogenicity. Out of 11 test substances, positive comet results were obtained for colchicine, hydroxyurea and actinomycin D. No effect on DNA migration, determined as the tail moment, was found with theophylline or 2,4-dinitrophenol. Bisphenol A, vinblastine, paclitaxel and p-anisidine appeared cytotoxic clastogens because these induced tail moment at concentrations showing 60% or less cell survival. In addition, among three test substances showing the bimodal distribution of DNA damage, which is a characteristic of apoptosis, true apoptosis result was obtained for camptothecin and dexamethasone with the Annexin V affinity assay. With this limited data-set, an investigation into the predictive value of these short-term genotoxicity tests for determining the carcinogenicity showed that comet assay has relatively high sensitivity and superior specificity to other four short-term genotoxicity assay. Therefore, our data suggest that comet assay, especially in combination with apoptotic assay, would be a good predictive test to minimize false-positives in evaluation of the potential rodent carcinogenicity.  相似文献   

4.
One of the important advantages of the comet assay is its ability to detect genotoxicity in many different organs. Since the exposure route of the test compounds is likely to influence the genotoxicity detected in a given organ, it is an important factor to consider when conducting the assay. In this study, we compared the effects of numerous model compounds on eight organs when administered to mice by intraperitoneal (i.p.) injection and oral (p.o.) gavage.Groups of four mice were treated once i.p. or p.o. at the identical proportion of LD50 for each route, and the stomach, colon, liver, kidney, bladder, lung, brain, and bone marrow were sampled 3, 8, and 24h after treatment. For 19 of the 20 tested mutagens with various modes of action, genotoxicity in some organs varied with treatment route; only the genotoxicity of methyl methane sulfonate was not affected. Treatment route, however, did not produce a qualitative difference in the genotoxicity of promutagens at the sites of conversion to ultimate mutagens, with aromatic hydrocarbons as the exception. When chemicals with positive responses in at least one organ were considered to be comet assay-positive, the administration route made no difference. Since azo reduction is mediated by azo reductase synthesized in the gastrointestinal wall and by gut microflora and i.p.-administered azo dyes bypass their activation site (colon), the administration route is expected to make a difference in their in vivo genotoxicity. Direct-acting mutagens are expected to affect the mucosa of the gastrointestinal tract when given p.o. For those mutagens, however, the administration route did not make a qualitative difference in gastrointestinal tract genotoxicity. Moreover, although the gastrointestinal mucosa is the first site to be exposed to p.o. administered agents, the peak times in the stomach tended to be the same as in most other organs. Based on those results, we concluded that the genotoxicity at high exposures was due to a systemic effect, and that both routes are acceptable for the comet assay when the liver and gastrointestinal organs are sampled, so long as appropriate dose levels for systemic exposure are selected for each route.  相似文献   

5.
To investigate whether DNA damage arising in spermatogenic germ cells can be detected in resultant sperm, we have irradiated murine testis and collected spermatozoa from the vas deferens 45 days later. These cells were derived from spermatogonia present at the time of irradiation. Two forms of irradiation were used, external X-rays (4Gy) and internal auger electrons from contamination of the male mouse with the isotope Indium-114m (1.85MBq), which was localised in the testis. Both forms of irradiation produced a profound fall in vas deferens sperm count and testis weight, Indium-114m being more effective. Using the neutral Comet assay for double strand break detection, significant increases in sperm comet tail length and moment were observed. The levels of damage were similar for both treatments. Care had to be taken during the assay to distinguish between sperm and somatic cells as the proportion of the latter increased after irradiation. We conclude that the comet assay can detect DNA damage in spermatozoa after the in vivo exposure of male germ cells to a known testicular genotoxic agent. The assay may be useful for the assessment of sperm DNA damage (double stranded) associated with male infertility and post-fertilization developmental abnormalities in the offspring.  相似文献   

6.
Glyphosate-based herbicides, such as Roundup, represent the most extensively used herbicides worldwide, including Brazil. Despite its extensive use, the genotoxic effects of this herbicide are not completely understood and studies with Roundup show conflicting results with regard to the effects of this product on the genetic material. Thus, the aim of this study was to evaluate the genotoxic effects of acute exposures (6, 24 and 96 h) to 10 mg L(-1) of Roundup on the neotropical fish Prochilodus lineatus. Accordingly, fish erythrocytes were used in the comet assay, micronucleus test and for the analysis of the occurrence of nuclear abnormalities and the comet assay was adjusted for branchial cells. The results showed that Roundup produces genotoxic damage in erythrocytes and gill cells of P. lineatus. The comet scores obtained for P. lineatus erythrocytes after 6 and 96 h of exposure to Roundup were significantly higher than respective negative controls. For branchial cells comet scores were significantly higher than negative controls after 6 and 24 h exposures. The frequencies of micronucleus and other erythrocyte nuclear abnormalities (ENAs) were not significantly different between Roundup exposed fish and their respective negative controls, for all exposure periods. In conclusion, the results of this work showed that Roundup produced genotoxic effects on the fish species P. lineatus. The comet assay with gill cells showed to be an important complementary tool for detecting genotoxicity, given that it revealed DNA damage in periods of exposure that erythrocytes did not. ENAs frequency was not a good indicator of genotoxicity, but further studies are needed to better understand the origin of these abnormalities.  相似文献   

7.
The purpose of this study was to find a possible explanation of the inconsistency of data regarding the genotoxicity of microcystin-LR (MC-LR). We compared the results of the comet assay with the results of the analysis of chromosome aberrations and apoptosis. In order to investigate the influence of MC-LR on DNA damage in human lymphocytes, cells were treated with MC-LR at different concentrations (1, 10 and 25 microg/ml) for 6, 12, 18 and 24 h. Analyses of Olive Tail Moment (OTM) as an indicator of DNA damage showed that MC-LR treatment induced DNA damage in a time-dependent manner, reaching its maximum after 18 h. The lowest values of OTM were observed after 24 h. MC-LR had no effect on the frequency of chromosome aberrations in lymphocytes. Since some data available in the literature indicate that apoptosis may lead to overestimated or false positive results regarding the genotoxicity of mutagens in the comet assay, we measured the frequency of late apoptotic cells by use of the comet assay and the frequency of early apoptotic cells with the TUNEL method. The comet assay results revealed that the highest level of apoptosis was observed after 24 h and the lowest after 18 h. The comparison of the frequency of apoptotic cells determined by the comet assay with DNA damage (OTM) examined by the comet assay revealed a statistically significant, negative correlation. The TUNEL results showed that the frequency of apoptotic cells progressively increased in a dose- and time-dependent manner. The comparison of the frequency of apoptotic cells determined by TUNEL method with DNA damage (OTM) examined by the comet assay showed a significant positive correlation for lymphocytes treated with MC-LR for 6, 12 and 18 h. Therefore, our findings indicate that microcystin-LR-induced DNA damage observed in the comet assay may be related to the early stages of apoptosis due to cytotoxicity but not genotoxicity. In addition, we examined the DNA repair kinetics in lymphocytes following treatment with microcystin-LR and ionizing radiation. Our results indicate that MC-LR has an inhibiting effect on the repair of radiation-induced damage.  相似文献   

8.
The comet assay (single-cell gel electrophoresis, SCG) is widely accepted as an in vitro and in vivo genotoxicity test. Because of its demonstrated ability to detect various kinds of DNA damage and its ease of application, the technique is being increasingly used in human biomonitoring. However, the assessment of small genotoxic effects as typically obtained in biomonitoring may be limited by the different sources of assay variability and the lack of an optimal protocol with high sensitivity. To better characterize the suitability of the comet assay for biomonitoring, we are performing a comprehensive investigation on blood samples from smokers and non-smokers. Because tobacco smoke is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds, smokers should be a suitable study group with relevant mutagen exposure. Here, we report our results for the first sample of 20 healthy male smokers and 20 healthy male non-smokers. Baseline and benzo[a]pyrene diolepoxide (BPDE)-induced effects were analysed by two investigators using two image analysis systems. The study was repeated within 4 months. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline and BPDE-induced DNA damage was comparatively analysed. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. None of these approaches revealed significant differences between smokers and non-smokers. Although more data is needed for a final conclusion, this study indicates some limitations of the comet assay with regard to the detection of DNA damage induced by environmental mutagens in peripheral blood cells.  相似文献   

9.
The comet assay (single-cell gel electrophoresis, SCG) is widely accepted as an in vitro and in vivo genotoxicity test. Because of its demonstrated ability to detect various kinds of DNA damage and its ease of application, the technique is being increasingly used in human biomonitoring. However, the assessment of small genotoxic effects as typically obtained in biomonitoring may be limited by the different sources of assay variability and the lack of an optimal protocol with high sensitivity. To better characterize the suitability of the comet assay for biomonitoring, we are performing a comprehensive investigation on blood samples from smokers and non-smokers. Because tobacco smoke is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds, smokers should be a suitable study group with relevant mutagen exposure. Here, we report our results for the first sample of 20 healthy male smokers and 20 healthy male non-smokers. Baseline and benzo[a]pyrene diolepoxide (BPDE)-induced effects were analysed by two investigators using two image analysis systems. The study was repeated within 4 months. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline and BPDE-induced DNA damage was comparatively analysed. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. None of these approaches revealed significant differences between smokers and non-smokers. Although more data is needed for a final conclusion, this study indicates some limitations of the comet assay with regard to the detection of DNA damage induced by environmental mutagens in peripheral blood cells.  相似文献   

10.
Today reconstructed skin models that simulate human skin, such as Episkin, are widely used for safety or efficacy pre-screening. Moreover, they are of growing interest for regulatory purposes in the framework of alternatives to animal testing. In order to reduce and eventually replace results of in vivo genotoxicity testing with in vitro data, there is a need to develop new complementary biological models and methods with improved ability to predict genotoxic risk. This can be achieved if these new assays do take into account exposure conditions that are more relevant than in the current test systems. In an attempt to meet this challenge, two new applications using a human reconstructed skin model for in vitro genotoxicity assessment are proposed. The skin is the target organ for dermally exposed compounds or environmental stress. Although attempts have been made to develop genotoxicity test procedures in vivo on mouse skin, human reconstructed skin models have not been used for in vitro genotoxicity testing so far, although they present clear advantages over mouse skin for human risk prediction. This paper presents the results of the development of a specific protocol allowing to perform the comet assay, a genotoxicity test procedure, on reconstructed skin. The comet assay was conducted after treatment of Episkin with UV, Lomefloxacin and UV or 4-nitroquinoline-N-oxide (4NQO). Treatment with the sunscreen Mexoryl was able to reduce the extent of comet signal. A second approach to use reconstructed epidermis in genotoxicity assays is also proposed. Indeed, the skin is a biologically active barrier driving the response to exposure to chemical agents and their possible metabolites. A specific co-culture system (Figure 1) using Episkin to perform the regular micronucleus assay is presented. Micronucleus induction in L5178Y cells cultured underneath Episkin was assessed after treatment of the reconstructed epidermis with mitomycin C, cyclophosphamide or apigenin. This second way of using human reconstructed skin for genotoxicity testing aims at improving the relevance of exposure conditions in in vitro genotoxicity assays for dermally applied compounds.  相似文献   

11.
Ptaquiloside, a norsesquiterpene glycoside from bracken (Pteridium aquilinum), is a known carcinogen towards animals. Its genotoxicity is mainly attributed to its DNA-alkylating and clastogenic properties. This study analyses various modes of genotoxic action of ptaquiloside in human mononuclear blood cells. The alkaline comet assay was performed on cells exposed to 5μg/ml ptaquiloside for 5, 10, 20, 30, 40 or 50min. Tail length was used as a DNA-damage parameter. Assays to determine structural and numerical chromosomal aberrations and sister-chromatid exchange were conducted on cells exposed to 5, 10 or 20μg/ml ptaquiloside for 48h. The tail length showed maximum DNA damage at 20-30min, diminishing onwards. Highly significant (p<0.001) dose-dependent increases in structural and numerical chromosomal aberrations and SCE were observed in response to ptaquiloside. These results indicate that ptaquiloside is not only a DNA-alkylating agent, but expresses its genotoxicity through multiple mechanisms including clastogenesis, aneugenesis and the mechanism underlying SCE induction, which is not entirely understood. Recent studies support the role played by aneuploidy in oncogenesis, highlighting the importance of this endpoint for mutagenicity screening. SCE are thought to represent the long-term effects of mutagens and are an important genotoxicity biomarker. The present results also agree with data from epidemiological studies and from animal in vivo studies, further supporting the hypothesis that ptaquiloside may represent a significant threat to human health.  相似文献   

12.
In vitro gametogenesis from embryonic stem cells   总被引:3,自引:0,他引:3  
Many insights into mammalian germ cell development have been gained through genetic engineering and in vivo studies, but the lack of an in vitro system for deriving germ cells has hindered potential advances in germ cell biology. Recent studies have demonstrated embryonic stem cell differentiation into germ cells and more mature gametes, although significant unanswered questions remain about the functionality of these cells. The derivation of germ cells from embryonic stem cells in vitro provides an invaluable assay both for the genetic dissection of germ cell development and for epigenetic reprogramming, and may one day facilitate nuclear transfer technology and infertility treatments.  相似文献   

13.
Vasquez MZ 《Mutation research》2012,747(1):142-156
While the in vivo comet assay increases its role in regulatory safety testing, deliberations about the interpretation of comet data continue. Concerns can arise regarding comet assay publications with limited data from non-blind testing of positive control compounds and using protocols (e.g. dose concentrations, sample times, and tissues) known to give an expected effect. There may be a tendency towards bias when the validation or interpretation of comet assay data is based on results generated by widely accepted but non-validated assays. The greatest advantages of the comet assay are its sensitivity and its ability to detect genotoxicity in tissues and at sample times that could not previously be evaluated. Guidelines for its use and interpretation in safety testing should take these factors into account. Guidelines should be derived from objective review of data generated by blind testing of unknown compounds dosed at non-toxic concentrations and evaluated in a true safety-testing environment, where the experimental design and conclusions must be defensible. However, positive in vivo comet findings with such compounds are rarely submitted to regulatory agencies and this data is typically unavailable for publication due to its proprietary nature. To enhance the development of guidelines for safety testing with the comet assay, and with the permission of several sponsors, this paper presents and discusses relevant data from multiple GLP comet studies conducted blind, with unknown pharmaceuticals and consumer products. Based on these data and the lessons we have learned through the course of conducting these studies, I suggest significant adjustments to the current conventions, and I provide recommendations for interpreting in vivo comet assay results in situations where risk must be evaluated in the absence of carcinogenicity or clinical data.  相似文献   

14.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

15.
In the present study, DNA-damage and clastogenic or aneugenic effects of genotoxic compounds were examined in a metabolically competent human cell line (HepG2 cells) using the micronucleus and the comet assays. Compounds with various action mechanisms were tested: direct mutagens such as 4-nitroquinoline-N-oxide (4-NQO) and methyl methanesulfonate (MMS) and indirect mutagens requiring biotransformation to be active such as N-nitrosodimethylamine (NDMA), benzo[a]pyrene (B[a]P) and 2-acetylaminofluorene (2-AAF). The compounds were first tested for cytotoxicity by measuring their effects on RNA synthesis inhibition in HepG2 cells. 4-NQO, B[a]P and 2-AAF were the most potent compounds; their IC(50) values were, respectively, 1.9 micro M (4h contact), 3.4 and 112 micro M after 20 h. MMS was mildly cytotoxic (IC(50)=0.9 mM) and NDMA had a weak effect (IC(50)=110 mM) after 4h contact. In the micronucleus and comet assays, concentrations required to obtain a significant genotoxic effect in HepG2 cells varied over a broad range, NDMA being active only at very high concentrations. To compare the sensitivity of the two assays, we measured the so-called FIC(2)-the concentration necessary to induce a 2-fold increase of the measured genotoxicity parameter. The data show that genotoxic effects were consistently observed at lower concentrations in the micronucleus test, except in the case of MMS. The measured FIC(2) values were 0.12 micro M (4-NQO), 0.17 micro M (2-AAF), 0.26 micro M (B[a]P) and 6.4mM (NDMA). MMS had such a weak effect in the HepG2 cells that we could not calculate its FIC(2) value. In the comet assay, FIC(2) values were observed, respectively, at 1.48 micro M (4-NQO), 3.67 micro M (B[a]P), 13.42 micro M (MMS) and 27 mM (NDMA). 2-AAF failed to induce DNA-damage in this assay. The present study shows that HepG2 cells could be a suitable tool for assessing the genotoxicity of direct and indirect mutagens and for establishing the lowest genotoxic concentration.  相似文献   

16.
To evaluate whether DNA alterations in mature spermatozoa could stem from DNA damage induced in immature germ cells, testis cells and spermatozoa were analyzed by the comet assay and by the sperm chromatin structure assay 14, 45 and 100 days after in vivo X irradiation of the testes. These times were selected, according to the mouse seminiferous epithelium cycle, to follow the DNA damage induced in different germ cell compartments. The cytotoxic action was assessed by DNA flow cytometric analysis of testicular cells. A dose-dependent increase of DNA damage in testis cells was observed 14 days after irradiation, whereas mature sperm cells were not affected. On the other hand, an increase in DNA strand breaks was seen in spermatozoa 45 days after treatment. DNA damage returned to the control levels 100 days after irradiation. The methods used to evaluate DNA damage gave comparable results, emphasizing the correlation between DNA fragmentation and susceptibility of sperm chromatin to denaturation. Both techniques showed the high radiosensitivity of differentiating spermatogonia. The overall results showed that DNA damage induced in pre-meiotic germ cells is detectable in primary spermatocytes and is still present in mature spermatozoa.  相似文献   

17.
Highly mutagenic compounds such as some PAHs have been identified in surface waters and sediments of the Seine river estuary. Suspended particulate matter (SPM) represents a dynamic medium that may contribute to the exposure of aquatic organisms to toxic compounds in the water column of the estuary. In order to investigate major sources of mutagenic contaminants along the estuary, water samples were taken at 25 m downstream of the outlet of an industrial wastewater-treatment plant (WWTP). SPM samples were analyzed for their genotoxicity with two short-term tests, the Salmonella typhimurium mutagenicity assay (TA98+S9 mix) and the comet assay in the human HepG2 cell line. Sampling sites receiving effluents from a chemical dye industry and WWTP showed the highest mutagenic potencies, followed by petrochemical industries, petroleum refinery and pulp and paper mills. These data indicate that frame-shift mutagens are present in the Seine river estuary. Furthermore, the comet assay revealed the presence of compounds that were genotoxic for human hepatocytes (HepG2 cells). We also observed a high level of mutagenic potency in the sediment of the lower estuary (3 × 10? revertants/g). The source of mutagenic and genotoxic compounds seems to be associated with various types of effluents discharged in the Seine river estuary. Both test systems resulted in the same assessment of the genotoxicity of particulate matter, except for three of the 14 samples, underlying the complementarity of bioassays.  相似文献   

18.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

19.
Germ cells are essential for the propagation of individual species. Studies on germ cell development in mice highlight important biological paradigms. Beginning with their first appearance around embryonic day 7 (E7), germ cells undergo specific cellular changes at different stages of their embryonic and adult development. Germ cells migrate through the hind‐regions of the embryo to eventually home into the developing gonads. Further differentiation and development of germ cells differ in males and females. The processes involved in germ cell development and their eventual differentiation into sperm and oocytes have been under extensive investigation in recent years. Studies on germ cells have shed light on the cellular and molecular processes involved in their specification, migration, proliferation, death, and differentiation. These studies have also revealed much about maintenance of stem cell populations and fertility. Here we review the genetic tools that are at present available to study germ cells in the mouse. genesis 47:617–627, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Interaction between Vitamin C (VitC) and transition metals can induce the formation of reactive oxygen species (ROS). VitC may also act as an ROS scavenger and as a metal chelant. To examine these possibilities, we tested in vivo the effect of two doses of VitC (1 and 30 mg/kg of mouse body weight) on the genotoxicity of known mutagens and transition metals. We used the alkaline version of the comet assay to assess DNA damage in peripheral white blood cells of mice. Animals were orally given either water (control), cyclophosphamide (CP), methyl methanesulfonate (MMS), cupric sulfate or ferrous sulfate. A single treatment with each VitC dose was administered after treatment with the mutagens or the metal sulfates. Both doses of VitC enhanced DNA damage caused by the metal sulfates. DNA damage caused by MMS was significantly reduced by the lower dose, but not by the higher dose of VitC. For CP, neither post-treatment dose of VitC affected the DNA damage level. These results indicate a modulatory role of Vitamin C in the genotoxicity/repair effect of these compounds. Single treatment with either dose of VitC showed genotoxic effects after 24 h but not after 48 h, indicating repair. Double treatment with VitC (at 0 and 24 h) induced a cumulative genotoxic response at 48 h, more intense for the higher dose. The results suggest that VitC can be either genotoxic or a repair stimulant, since the alkaline version of the comet assay does not differentiate "effective" strand breaks from those generated as an intermediate step in excision repair (incomplete excision repair sites). Further data is needed to shed light upon the beneficial/noxious effects of VitC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号