首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Katona P 《Anaerobe》2012,18(2):240-243
The clinical effects of Clostridium botulinum and its extremely potent neurotoxin have been known for two centuries. The disease threat and the clinical uses are now well established. What's changed is the potential for botulinum neurotoxin to be used as a biological threat agent. The recent upsurge of illegal trafficking of reagent-grade toxin could, if bought in large enough quantities, be as serious a threat as other biothreat agents such as anthrax and smallpox, which have received much more attention. Fortunately, effective countermeasures are available.  相似文献   

3.
The manipulation of cellular redox status has emerged as a promising therapeutic strategy to prevent uncontrolled inflammatory response. Thioredoxin is an important regulator of cellular redox homeostasis, which catalyzes the reduction of disulfide bonds. Human thioredoxin, originally identified as a secretory protein ADF, has been implicated in a wide variety of redox regulations in both intracellular and extracellular compartments. This review includes a summary of the evidence available supporting the employment of the beneficial properties of thioredoxin to combat inflammation, an evaluation of the potential of redox-based therapy for the treatment of inflammatory diseases, and a discussion on the conceptual model of a redox-sensitive signaling complex, Redoxisome, consisting of thioredoxin and its redox partners.  相似文献   

4.
5.
6.
Errors occur randomly and at low frequency during the translation of mRNA. However, such errors may also be programmed by the sequence and structure of the mRNA. These programmed events are called 'recoding' and are found mostly in viruses, in which they are usually essential for viral replication. Translational errors at a stop codon may also be induced by drugs, raising the possibility of developing new treatment protocols for genetic diseases on the basis of nonsense mutations. Many studies have been carried out, but the molecular mechanisms governing these events remain largely unknown. Studies on the yeast Saccharomyces cerevisiae have contributed to characterization of the HIV-1 frameshifting site and have demonstrated that frameshifting is conserved from yeast to humans. Yeast has also proved a particularly useful model organism for deciphering the mechanisms of translation termination in eukaryotes and identifying the factors required to obtain a high level of natural suppression. These findings open up new possibilities for large-scale screening in yeast to identify new drugs for blocking HIV replication by inhibiting frameshifting or restoring production of the full-length protein from a gene inactivated by a premature termination codon. We explore these two aspects of the contribution of yeast studies to human medicine in this review.  相似文献   

7.
Huntington's disease is an autosomal dominant genetic neurodegenerative disorder, which is characterized by progressive motor dysfunction, emotional disturbances, dementia, and weight loss. The disease is caused by pathological CAG-triplet repeat extension(s), encoding polyglutamines, within the gene product, huntingtin. Huntingtin is ubiquitously expressed through the body and is a protein of uncertain molecular function(s). Mutant huntingtin, containing pathologically extended polyglutamines causes the earliest and most dramatic neuropathologic changes in the neostriatum and cerebral cortex. Extended polyglutamines confer structural conformational changes to huntingtin, which gains novel properties, resulting in aberrant interactions with multiple cellular components. The diverse and variable aberrations mediated by mutant huntingtin perturb many cellular functions essential for neuronal homeostasis and underlie pleiotropic mechanisms of Huntington's disease pathogenesis. The only approved drug for Huntington's disease is a symptomatic treatment, tetrabenazine; thus, novel neuroprotective strategies, slowing, blocking and possibly reversing disease progression, are vital for developing effective therapies.  相似文献   

8.
Targeting antioxidants to mitochondria: a new therapeutic direction   总被引:12,自引:0,他引:12  
Mitochondria play an important role in controlling the life and death of a cell. Consequently, mitochondrial dysfunction leads to a range of human diseases such as ischemia-reperfusion injury, sepsis, and diabetes. Although the molecular mechanisms responsible for mitochondria-mediated disease processes are not fully elucidated yet, the oxidative stress appears to be critical. Accordingly, strategies are being developed for the targeted delivery of antioxidants to mitochondria. In this review, we shall briefly discuss cellular reactive oxygen species metabolism and its role in pathophysiology; the currently existing antioxidants and possible reasons why they are not effective in ameliorating oxidative stress-mediated diseases; and recent developments in mitochondrially targeted antioxidants and their future promise for disease treatment.  相似文献   

9.
Respiratory syncytial virus (RSV) is one of the most important viral pathogens causing respiratory tract infection in infants, the elderly and people with poor immune function, which causes a huge disease burden worldwide every year. It has been more than 60 years since RSV was discovered, and the palivizumab monoclonal antibody, the only approved specific treatment, is limited to use for passive immunoprophylaxis in high-risk infants; no other intervention has been approved to date. However, in the past decade, substantial progress has been made in characterizing the structure and function of RSV components, their interactions with host surface molecules, and the host innate and adaptive immune response to infection. In addition, basic and important findings have also piqued widespread interest among researchers and pharmaceutical companies searching for effective interventions for RSV infection. A large number of promising monoclonal antibodies and inhibitors have been screened, and new vaccine candidates have been designed for clinical evaluation. In this review, we first briefly introduce the structural composition, host cell surface receptors and life cycle of RSV virions. Then, we discuss the latest findings related to the pathogenesis of RSV. We also focus on the latest clinical progress in the prevention and treatment of RSV infection through the development of monoclonal antibodies, vaccines and small-molecule inhibitors. Finally, we look forward to the prospects and challenges of future RSV research and clinical intervention.  相似文献   

10.
Malignant neoplasms are regarded as the main cause of death around the world; hence, many research studies were conducted to further perceive molecular mechanisms, treatment, and cancer prognosis. Cancer is known as a major factor for health-related problems in the world. The main challenges associated with these diseases are prompt diagnosis, disease remission classification and treatment status forecast. Therefore, progressing in such areas by developing new and optimized methods with the help of minimally invasive biological markers such as circular microRNAs (miRNAs) can be considered important. miRNA interactions with target genes have specified their role in development, apoptosis, differentiation, and proliferation and also, confirm direct miRNA function in cancer. Different miRNAs expression levels in various types of malignant neoplasms have been observed to be associated with prognosis of various carcinomas. miR-9 seems to implement opposite practices in different tissues or under various cancer incidences by influencing different genes. Aberrant miR-9 levels have been observed in many cancer types. Therefore, we intended to investigate the precise role of miR-9 in patients with malignant neoplasms. To this end, in this study, we attempted to examine different studies to clarify the overall role of miR-9 as a prognostic marker in several human tumors. The presented data in this study can help us to find the novel therapeutic avenues for treatment of human cancers.  相似文献   

11.
Nonthermal pulsed electromagnetic fields, from low frequency to pulse-modulated radio frequency, have been successfully employed as adjunctive therapy for the treatment of delayed and non-union fractures, fresh fractures and chronic wounds. Recent increased understanding of the mechanism of action of electromagnetic fields (EMF) has permitted technologic advances allowing the development of EMF devices which are portable and disposable, can be incorporated into dressings, supports and casts, and can be used over clothing. This broadens the use of non-pharmacological, non-invasive EMF therapy to the treatment of postoperative pain and edema to enhance surgical recovery. EMF therapy is rapidly becoming a standard part of surgical care, and new, more significant, clinical applications for osteoarthritis, brain and cardiac ischemia and traumatic brain injury are in the pipeline. This study reviews recent evidence which suggests that calmodulin (CaM)-dependent nitric oxide signaling is involved in cell and tissue response to weak nonthermal EMF signals. There is abundant evidence that EMF signals can be configured a priori to increase the rate of CaM activation, which, in turn, can modulate the biochemical cascades living cells and tissues employ in response to external insult. Successful applications in pilot clinical trials, coupled with evidence at the cellular and animal levels, provide support that EMF is a first messenger that can modulate the response of challenged biological systems.  相似文献   

12.
Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson’s disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide  相似文献   

13.
14.
Unlike other normal cells, a subpopulation of cells often termed as “stem cells” are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.  相似文献   

15.
16.
Since overt listeriosis occurs mainly in immunocompromised persons it is quite consistent to try to restore the hampered defence system by supportive measurements. For direct antimicrobial treatment a series of different antibiotics is available, since Listeria strains isolated from patients are in general susceptible to a wide range of antibiotics, except fosfomycin, quinolones and cephalosporins of the third generation, although a few exceptional strains exist. Unfortunately, most antibiotics are not bactericidal for Listeria. Drug combinations may exert a synergistic effect. Furthermore, the efficacy of therapy is limited by the fact of intracellular habitat of pathogenic Listeria. Few agents, such as macrolides and quinolones, are accumulated within host cells and may attack the intracellular Listeriae. The clinical experience shows that the combination of amoxicillin and gentamicin is the best option.  相似文献   

17.
18.
A wealth of new data have become available to the scientific community as a result of the sequencing of many pathogen genomes. A recent meeting devoted to functional genomics of pathogenic microorganisms confirmed the notion that bacterial genomes are not static, because large blocks of genes can be acquired or deleted. Less complex environments usually result in reduction in genome size, while genome expansion is usually associated with environmental change and complexity. During the meeting, pathogenicity and evolutionary aspects were illustrated for enteric pathogens, as well as the microevolution of the plague bacillus Yersinia pestis. New clues for evolution and pathogenicity were derived from comparative genomics of Listeria species. The genomic organization of Bartonellae, an emerging human pathogen, was also discussed in an evolutionary context. Population and functional genomics of Anthrax-causing bacteria highlighted current scientific interest in this potential biothreat.  相似文献   

19.
The Sirtuin family: therapeutic targets to treat diseases of aging   总被引:2,自引:0,他引:2  
Sirtuins have emerged as therapeutic targets to treat age-related diseases. There are seven human Sirtuins (SIRT1-7) that display diversity in cellular localization and function. Growing evidence suggests that small-molecule activators of SIRT1 may counteract age-related afflictions such as type 2 diabetes. Alternatively, inhibitors of SIRT2 may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Recent discoveries of small-molecule and protein modulators of Sirtuin deacetylation activity have provided enormous insight into the biological and molecular functions of Sirtuins and have validated their potential as therapeutics.  相似文献   

20.
Tachibana K 《Human cell》2004,17(1):7-15
Ultrasound is used today in medicine as a modality for diagnostic imaging. Recently, there have been numerous reports on the application of thermal and nonthermal ultrasound energy for treating various diseases. In addition to thermal ablation of tumors, non-thermal ultrasound combined with drugs and genes have led to much excitement especially for cancer treatment, vascular diseases, and regenerative medicine. Ultrasound energy can enhance the effects of thrombolytic agents such as urokinase for treatment of stroke and acute myocardial infarction. New ultrasound technologies have resulted in advanced devices such as a) ultrasound catheters, b) Non-invasive methods as high intensity focused ultrasound (HIFU) in conjunction with MRI and CT is already being applied in the clinical field, c) Chemical activation of drugs by ultrasound energy for treatment of tumors is another new field recently termed "Sonodynamic Therapy", and d) Combination of genes and microbubble have induced great hopes for ideal gene therapy (sonoporation). Various examples of ultrasound combined modalities are under investigation which could lead to revolutionary therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号