首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation state of type I Fc epsilon-receptors (Fc epsilon RI) on the surface of single living mast cells was investigated by resonance fluorescence energy transfer. Derivatization of Fc epsilon RI specific ligands, i.e., immunoglobulin E or Fab fragments of a Fc epsilon RI specific monoclonal antibody, with donor and acceptor fluorophores provided a means for measuring receptor clustering through energy transfer between the receptor probes. The efficiency of energy transfer between the ligands carrying distinct fluorophores was determined on single cells in a microscope by analyzing the photobleaching kinetics of the donor fluorophore in the presence and absence of receptor ligands labeled with acceptor fluorophores. To rationalize the energy transfer data, we developed a theoretical model describing the dependence of the energy transfer efficiency on the geometry of the fluorescently labeled macromolecular ligands and their aggregation state on the cell surface. To this end, the transfer process was numerically calculated first for one pair and then for an ensemble of Fc epsilon RI bound ligands on the cell surface. The model stipulates that the aggregation state of the Fc epsilon RI is governed by an attractive lipid-protein mediated interaction potential. The corresponding pair-distribution function characterizes the spatial distribution of the ensemble. Using this approach, the energy transfer efficiency of the ensemble was calculated for different degrees of receptor aggregation. Comparison of the theoretical modeling results with the experimental energy transfer data clearly suggests that the Fc epsilon RI are monovalent, randomly distributed plasma membrane proteins. The method provides a novel approach for determining the aggregation state of cell surface components.  相似文献   

2.
Our newly developed fluorescence resonance energy transfer (FRET) based technique, fluorescence nanotomography (FN), is used to determine the morphology and dynamics of some soft materials and bio-molecules by attaching donor (D) fluorophores and acceptors (A) to the investigated structure and using fluorescence lifetime measurements to reveal the D-A distance distribution function rhoDA(r). We report the effect of the limited sizes of the donor and acceptor, effect of porous polymer, and molecular structure and phase transition in phospholipid bilayers.  相似文献   

3.
Fluorescence resonance energy transfer on DNA has been studied for the estimation of distances between specific sites. Two kind of fluorophores, donor and acceptor, were incorporated on double-stranded DNA via phosphorothioate linkage (Sp, Rp, or racemic mixture). The thermal stability of labeled DNA's was slightly dependent on the stereochemical orientation of fluorophore, however all of the duplex structures were stable under the conditions for fluorescence study. The distances between donor and acceptor fluorophores, estimated from fluorescence energy transfer, generally agreed with the expected distance in a B-type DNA for the limiting distance.  相似文献   

4.
We report the design, synthesis, and characterization of molecular beacons (MB) consisting of three distinct fluorophores, 6-carboxyfluorescein (Fam), N,N,N',N'-tetramethyl-6-carboxyrhodamine (Tam), and Cyanine-5 (Cy5). The primary light absorber/energy donor (Fam) is located on one terminus of the MB, whereas the primary energy acceptor/secondary donor (Tam) and secondary acceptor (Cy5) are located at the other terminus of the MB. In the absence of target DNA or RNA, the MB exists in the stem-closed form. Excitation of Fam initiates an energy transfer cascade from Fam to Tam and further to Cy5 generating unique fluorescence signatures defined as the ratio of the emission from each of the three fluorophores. This energy transfer cascade was investigated in detail by steady-state and time-resolved fluorescence spectroscopy, as well as fluorescence depolarization studies. In the presence of the complementary target DNA, the MB opened efficiently and hybridized with the target separating Fam and Tam by a large distance, so that energy transfer from Fam to Tam was blocked in the stem-open form. This opening of the MB generates a "bar code" fluorescence signature, which is different from the signature of the stem-closed MB. The fluorescence signature of this combinatorial fluorescence energy transfer MB can be tuned by variation of the spacer length between the individual fluorophores.  相似文献   

5.
Fluorescence resonance energy transfer (FRET) is a technique used for quantifying the distance between two molecules conjugated to different fluorophores. By combining optical microscopy with FRET it is possible to obtain quantitative temporal and spatial information about the binding and interaction of proteins, lipids, enzymes, DNA, and RNA in vivo. In conjunction with the recent development of a variety of mutant green fluorescent proteins (mtGFPs), FRET microscopy provides the potential to measure the interaction of intracellular molecular species in intact living cells where the donor and acceptor fluorophores are actually part of the molecules themselves. However, steady-state FRET microscopy measurements can suffer from several sources of distortion, which need to be corrected. These include direct excitation of the acceptor at the donor excitation wavelengths and the dependence of FRET on the concentration of acceptor. We present a simple method for the analysis of FRET data obtained with standard filter sets in a fluorescence microscope. This method is corrected for cross talk (any detection of donor fluorescence with the acceptor emission filter and any detection of acceptor fluorescence with the donor emission filter), and for the dependence of FRET on the concentrations of the donor and acceptor. Measurements of the interaction of the proteins Bcl-2 and Beclin (a recently identified Bcl-2 interacting protein located on chromosome 17q21), are shown to document the accuracy of this approach for correction of donor and acceptor concentrations, and cross talk between the different filter units.  相似文献   

6.
The fluorescence quantum yield of a polymer molecule to which an energy donor chromophore and an energy acceptor chromophore are attached depends on the distance between the donor and acceptor chromophores. If this distance fluctuates with time, the fluorescence intensity is expected to fluctuate as well, and the time course of the intensity fluctuations will be correlated with the time course of the changes in the interchromophore distance. The intensity fluctuations are experimentally measurable if the number of illuminated molecules is small. A theoretical treatment of such fluorescence intensity fluctuations is presented in terms of a parameter that describes the polymer chain dynamics. Computer simulations were performed to illustrate the dependence of the autocorrelation function of the intensity fluctuations on the polymer chain conformation, the interchromophore energy transfer properties, and the macromolecular dynamics. These simulations demonstrate that the intensity fluctuations due to nonradiative energy transfer between chromophores attached to polymer chains can be large enough to be experimentally useful in the study of intramolecular dynamics of macromolecules.  相似文献   

7.
A recipe is given for designing theoretical models for donor-acceptor systems in which fluorescence energy transfer and motion takes place simultaneously. This recipe is based on the idea that a system exhibiting both motion and fluorescence energy transfer can be modeled by specifying a number of "states" and the rates of transitions between them. A state in this context is a set of specific coordinates and conditions that describe the system at a certain moment in time. As time goes on, the coordinates and conditions for the system change, and this evolution can be described as a series of transitions from one state to the next. The recipe is applied to a number of example systems in which the donors and/or acceptors undergo either rotational or translational motion. In each example, fluorescence intensities and anisotropies for the donor and acceptor are calculated from solutions of eigensystems. The proposed method allows for analyzing time-resolved fluorescence energy transfer data without restrictive assumptions for motional averaging regimes and the orientation factor. It is shown that the fluorescence quantities depend on the size of the motional step (i.e., on the number of states), only if fluorescence energy transfer occurs. This finding indicates that fluorescence energy transfer studies may reveal whether the dynamics of a system (e.g., a protein) is better described in terms of transitions between a relatively small number of discrete states (jumping) or a large number of dense states (diffusion).  相似文献   

8.
The general case of F?rster-type energy transfer is that in which energy is exchanged in both directions between two unlike fluorophores. In such cases, energy is transferred from the conventionally defined donor to the conventionally defined acceptor (forward transfer) and at the same time from the acceptor to the donor (reverse transfer). Expressions are derived to describe the fluorescence intensities and lifetimes of fluorophores undergoing simultaneous forward and reverse transfer; these are compared with corresponding quantities for the case more usually considered, in which only forward transfer is significant. It is shown that the presence of reverse transfer removes the distinction between donor and acceptor, and allows such anomalous effects as 'acceptor quenching'. A confirmatory example is described. It is shown that the equations generally used in distance determination by steady-state fluorescence spectroscopy can also be applied in the presence of reverse transfer, if a correction term is included; however, for lifetime spectroscopy the correction is more complex.  相似文献   

9.
We studied fluorescence resonance energy transfer between donors and acceptors bound to double-helical DNA. The donor Hoechst 33258 binds to the minor groove of DNA and the acceptor propidium iodide (PI) is an intercalator. The time-resolved donor decays were measured in the frequency domain. The donor decays were consistent with a random 1-dimensional distribution of acceptors. The decays were analyzed in terms of three 1-dimensional models: a random continuous acceptor distribution; acceptors placed on discrete lattice sites; and a cylindrical model with the acceptor in the center, and the donors on a cylinder surface. The data were well described by all three models. Interpretation in terms of continuous distribution of acceptors revealed a minimum donor to acceptor distance of 13 A, which is 3 bp from the center of Hoechst 33252. These results suggest that PI is excluded from the 4 bp covered by Hoechst 33252 when it is bound to the minor groove of DNA.  相似文献   

10.
We describe practical aspects of photobleaching fluorescence energy transfer measurements on individual living cells. The method introduced by T. M. Jovin and co-workers (see, most recently, Kubitscheck et al. 1993. Biophys. J. 64:110) is based on the reduced rate of irreversible photobleaching of donor fluorophores when acceptor fluorophores are present. Measuring differences in donor photobleaching rates on cells labeled with donor only (fluorescein isothiocyanate-conjugated proteins) and with both donor and acceptor (tetramethylrhodamine-conjugated proteins) allows calculation of the fluorescence energy transfer efficiency. We assess possible methods of data analysis in light of the underlying processes of photobleaching and energy transfer and suggest optimum strategies for this purpose. Single murine B lymphocytes binding various ratios of donor and acceptor conjugates of tetravalent concanavalin A (Con A) and divalent succinyl Con A were examined for interlectin energy transfer by these methods. For Con A, a maximum transfer efficiency of 0.49 +/- 0.02 was observed. Under similar conditions flow cytometric measurements of donor quenching yielded a value of 0.54 +/- 0.03. For succinyl Con A, the maximum transfer efficiency was 0.36. To provide concrete examples of quantities arising in such energy transfer determinations, we present examples of individual cell data and kinetic analyses, population rate constant distributions, and error estimates for the various quantities involved.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

12.
A lipid transfer protein, purified from bovine brain (23.7 kDa, 208 amino acids) and specific for glycolipids, has been used to develop a fluorescence resonance energy transfer assay (anthrylvinyl-labeled lipids; energy donors and perylenoyl-labeled lipids; energy acceptors) for monitoring the transfer of lipids between membranes. Small unilamellar vesicles composed of 1 mol% anthrylvinyl-galactosylceramide, 1.5 mol% perylenoyl-triglyceride, and 97.5% 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) served as donor membranes. Acceptor membranes were 100% POPC vesicles. Addition of glycolipid transfer protein to mixtures of donor and acceptor vesicles resulted in increasing emission intensity of anthrylvinyl-galactosylceramide and decreasing emission intensity of the nontransferable perylenoyl-triglyceride as a function of time. The behavior was consistent with anthrylvinyl-galactosylceramide being transferred from donor to acceptor vesicles. The anthrylvinyl and perylenoyl energy transfer pair offers advantages over frequently used energy transfer pairs such as NBD and rhodamine. The anthrylvinyl emission overlaps effectively the perylenoyl excitation spectrum and the fluorescence parameters of the anthrylvinyl fluorophore are nearly independent of the medium polarity. The nonpolar fluorophores are localized in the hydrophobic region of the bilayer thus producing minimal disturbance of the bilayer polar region. Our results indicate that this method is suitable for assay of lipid transfer proteins including mechanistic studies of transfer protein function.  相似文献   

13.
BACKGROUND: Perrin equation suggests an alternative way for the accurate energy transfer determination on a cell-by-cell basis by measuring polarized donor intensities in a conventional flow cytometer. METHODS: The relationship between energy transfer and fluorescence anisotropy of the donor was investigated by flow cytometric generation of Perrin-lifetime plots of fluorescent antibody-labeled MHC class I and class II molecules on the surface of living cells. The energy transfer reduced the fluorescence lifetime of the donor. RESULTS: Perrin plots have proven to be sensitive to the segmental mobility of the labeling dye and that of antibodies of different isotypes, and homo-transfer due to the multiple labeling of antibodies. A method demonstrating the feasibility of energy transfer determination by measuring anisotropy enhancement of the donor is presented. Flow cytometric histograms of the donor anisotropy and of the deduced energy transfer efficiency are shown, indicating clustering of MHC class I and class II molecules on the surface of human T lymphoblasts. In the Appendix, a method for the simultaneous determination of both energy transfer efficiency and donor fluorescence anisotropy, without need for G-factor measurement, is also presented. CONCLUSIONS: We demonstrate that energy transfer efficiency, i.e., proximity, between suitably selected donor and acceptor, and the rotational relaxation of the donor, i.e., donor mobility, can be simultaneously measured in a flow cytometer.  相似文献   

14.
赵永芳 《生命科学》2011,(11):1140-1144
单分子荧光共振能量转移技术(single molecule fluorescence resonance energy transfer,smFRET)通过检测单个分子内的荧光供体及受体间荧光能量转移的效率,来研究分子构象的变化。在单分子探测技术发展之前,大多数的分子实验是探测分子的综合平均效应(ensemble averages),这一平均效应掩盖了许多特殊的信息。单分子探测可以对体系中的单个分子进行研究,得到某一分子特性的分布状况,也可研究生物分子的动力学反应。介绍了近来单分子荧光共振能量转移技术的进展。  相似文献   

15.
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using F?rster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.  相似文献   

16.
Intramonomer fluorescence energy transfer between the donor epsilon-ATP bound to the nucleotide-binding site and the acceptor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole bound to Cys-373 in G-actin was measured by steady-state fluorimetry. Assuming for the orientation factor its dynamic limit K2 = 2/3, the donor and acceptor distance in a G-actin molecule was calculated to be about 3 nm. The intermonomer energy transfer in F-actin occurring between the donor bound to an actin monomer and the acceptor bound to the nearest-neighbour actin monomer was also measured and the distance was calculated to be about 4 nm. The kinetics of the actin polymerization process was studied by following the decrease in fluorescence intensity upon addition of salts to G-actin solution. The initial velocity of the fluorescence intensity change was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to exp(-10/RT). These results indicated that the initial fluorescence intensity change corresponds to monomer-dimer transformation and its activation enthalpy was 10 kcal/mol.  相似文献   

17.
Relationship of donor and acceptor fluorescence anisotropies as well as efficiency of fluorescence resonance energy transfer (FRET) has been investigated in a confocal microscope in the context of FRET systems comprised of donor and acceptor-labeled MHCI and MHCII receptors on the surface of Kit-225 K6 human T-cells. The measurements have been carried out in a 2-laser, 5-signal platform where the total donor fluorescence intensity and 2 acceptor fluorescence intensities with their anisotropies – one at the donor's excitation wavelength, the other at the acceptor's excitation wavelength – have been detected. This configuration enabled the determination of FRET efficiency and correlating it with the two acceptor fluorescence anisotropies as a kind of calibration. Estimations for the FRET-enhanced donor fluorescence anisotropy, the directly excited acceptor fluorescence anisotropy, and the fluorescence anisotropy of sensitized emission have been obtained. Procedures for determining FRET by measuring only the total donor intensity and the acceptor intensity and its anisotropy, or two acceptor intensities and their anisotropies have been elaborated, the errors of which have been estimated based on the fluorescence anisotropy values obtained in the calibration with the method of flow cytometric energy transfer (FCET).The combined detection of the donor and acceptor fluorescence anisotropies enabled also the determination of the lower and upper limits of the orientation factor for FRET (κ2). An increase in range for κ2 with increasing FRET efficiency has been observed, with average κ2 values different from the dynamic random average of 2/3. These observations call for the need of κ2 determination in proximity measurements, where the donor and acceptor orientations are not predictable.An increasing range of κ2 with increasing intermolecular proximity of the MHCI and MHCII receptors has been observed. This indicates that molecular flexibility in the clusters of the MHCI and MHCII receptors reduces with increasing cluster density, i.e. a “fluidity gradient” exists in the clusters. More specifically, the local density dependent flexibility can also be taken as a direct proof for that the association of these receptors is non-random, but mediated by some type of physical interaction, a finding as a benefit of FRET detection by polarization spectroscopy.Two new quantities – the quenched donor fluorescence anisotropy and a fluorescence anisotropy analogue, the “dissymmetry index” of the polarized FRET efficiency components – have also been introduced for the characterization of the orientational dynamics of the excited state during FRET.  相似文献   

18.
We measured the nonradiative fluorescence resonance energy transfer between 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) labeled lipids (amine labeled phosphatidylethanolamine or acyl chain labeled phosphatidylcholine) and rhodamine labeled lipids in large unilamellar dioleoylphosphatidylcholine vesicles. Two new rhodamine labeled lipid analogues, one a derivative of monolauroylphosphatidylethanolamine and the other of sphingosylphosphorylcholine, were found to exchange through the aqueous phase between vesicle populations but not to be capable of rapid transbilayer movement between leaflets. Energy transfer from NBD to rhodamine was measured using liposomes with symmetric or asymmetric distributions of these new rhodamine labeled lipid analogues to determine the relative contributions of energy transfer between donor and acceptor fluorophores in the same (cis) and opposite (trans) leaflets. Since the characteristic R0 values for energy transfer ranged from 47 to 73 A in all cases, significant contributions from both cis and trans energy transfer were observed. Therefore, neither of these probes acts strictly as a half-bilayer quencher of NBD lipid fluorescence. The dependence of transfer efficiency on acceptor density was fitted to a theoretical treatment of energy transfer to determine the distances of closest approach for cis and trans transfer. These parameters set limits on the positions of the fluorescent groups relative to the bilayer center, 20-31 A for NBD and 31-55 A for rhodamine, and provide a basis for future use of these analogues in measurements of transbilayer distribution and transport.  相似文献   

19.
We consider and discuss the transfer of electronic energy between donor and acceptor molecules, both continuously distributed in an infinite space. In particular, the ensemble-average fluorescence intensity decay for the donor was calculated, taking into account the excluded volume. The latter may be associated either with finite molecular size or any other spatial restrictions, which are imposed on fluorophore distribution by a superstructure. Results show that in a system using excluded volume, the time dependence in donor decay is more complex compared to that predicted by a simplified stretched exponential model. We identify a crossover between two distinct time regimes in the refined decay and demonstrate its correlation with two competing parameters: r(m), which characterizes the minimal distance between interacting molecules, and R(0), which is related to the strength of the molecular interactions. In this context, the "apparent dimensionality" of the energy transfer recovered from the stretched exponential model ignores the crossover, and may be quite misleading. Basic theoretical considerations to that end are provided.  相似文献   

20.
In this work, fluorescence lifetime imaging microscopy in the time domain was used to study the fluorescence dynamics of ECFP and of the ratiometric chloride sensor Clomeleon along neuronal development. The multiexponential analysis of fluorophores combined with the study of the contributions of the individual lifetimes (decay-associated spectra) was used to discriminate the presence of energy transfer from other excited state reactions. A characteristic change of sign of the pre-exponential factors of lifetimes from positive to negative near the acceptor emission maxima was observed in presence of energy transfer. By fluorescence lifetime imaging microscopy, we could show that the individual conformations of CFP display differential quenching properties depending on their microenvironment. Suitability of Clomeleon as an optical indicator to obtain a direct readout of the intracellular chloride concentrations in living cells was verified by steady-state and time-resolved spectroscopy. The simultaneous study of the photophysical properties of Clomeleon, the calcium indicator Cameleon, and ECFP with neuronal development provided a kinetic model for the mechanism when competitive quenching effects as well as energy transfer occur in the same molecule. Simultaneous analysis of donor and acceptor kinetics was necessary to discriminate F?rsters resonance energy transfer along neuronal development due to the different cellular effects involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号