首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of shear alone on the aggregation of recombinant human growth hormone (rhGH) and recombinant human deoxyribonuclease (rhDNase) has been found to be insignificant. This study focused on the synergetic effect of shear and gas-liquid interface on these two model proteins. Two shearing systems, the concentric-cylinder shear device (CCSD) and the rotor/stator homogenizer, were used to generate high shear (> 10(6)) in aqueous solutions in the presence of air. High shear in the presence of an air-liquid interface had no major effect on rhDNase but caused rhGH to form noncovalent aggregates. rhGH aggregation was induced by the air-liquid interface and was found to increase with increasing protein concentration and the air-liquid interfacial area. The aggregation was irreversible and exhibited a first-order kinetics with respect to the protein concentration and air-liquid interfacial area. Shear and shear rate enhanced the interaction because of its continuous generation of new air-liquid interfaces. In the presence of a surfactant, aggregation could be delayed or prevented depending upon the type and the concentration of the surfactant. The effect of air-liquid interface on proteins at low shear was examined using a nitrogen bubbling method. We found that foaming is very detrimental to rhGH even though the shear involved is low. The use of anti-foaming materials could prevent rhGH aggregation during bubbling. The superior stability exhibited by rhDNase may be linked to the higher surface tension and lower foaming tendency of its aqueous solution. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 503-512, 1997.  相似文献   

2.
A rotating disk shear device was used to study the effect of interfacial shear on the structural integrity of human monoclonal antibodies of IgG4 isotype. Factors associated with the solution conditions (pH, ionic strength, surfactant concentration, temperature) and the interface (surface roughness) were studied for their effect on the rate of IgG4 monomer loss under high shear conditions. The structural integrity of the IgG4 was probed after exposure to interfacial shear effects by SDS‐PAGE, IEF, dynamic light scattering, and peptide mapping by LC‐MS. This analysis revealed that the main denaturation pathway of IgG4 exposed to these effects was the formation of large insoluble aggregates. Soluble aggregation, breakdown in primary structure, and chemical modifications were not detected. The dominant factors found to affect the rate of IgG4 monomer loss under interfacial shear conditions were found to be pH and the nanometer‐scale surface roughness associated with the solid‐liquid interface. Interestingly, temperature was not found to be a significant factor in the range tested (15–45°C). The addition of surfactant was found to have a significant stabilizing effect at concentrations up to 0.02% (w/v). Implications of these findings for the bioprocessing of this class of therapeutic protein are briefly discussed. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
A tunable acoustic biosensor for investigating the properties of biomolecules at the solid-liquid interfaces is described. In its current, format the device can be tuned to frequencies between 6.5 MHz and 1.1 GHz in order to provide a unique detection feature: a variable evanescent wave thickness at the sensor surface. The key to its successful implementation required the careful selection of antennae designs that could induce shear acoustic waves at the solid-liquid interface. This non-contact format makes it possible to recover resonant shear acoustic waves over 100 different harmonic frequencies as a result of the electrical characteristics of the spiral coil. For testing this multifrequency sensing concept the surface of a quartz disc was exposed to solutions of immunoglobulin G (IgG) to form an adsorbed monolayer, whence protein A and IgG were added again in order to form multilayers. Spectra at frequencies between 6 and 600 MHz were generated for each successive layer and revealed two characteristic phases: an initial phase at the low megahertz frequencies consistent with the conventional Sauerbrey relation, and a possible additional phase towards the high megahertz to gigahertz frequencies, that we believe relates to the structure of the biomolecular film. This two-phase behaviour evident from differences between high and low frequencies, rather than from any distinct frequency transition, was anticipated from the reduction in evanescent wave thickness down to nanometre dimensions, and thin film resonance phenomena that are known to occur for film and fluid systems. These measurements suggested that the single element acoustic biosensor we present here may form the basis from which to generate acoustic molecular spectra, or "acoustic fingerprints", in a manner akin to optical spectroscopy.  相似文献   

4.
The recovery of exopolysaccharides (EPS) produced by Sinorhizobium meliloti bacteria by dynamic microfiltration was investigated using a rotating disk device designed in our laboratory, equipped with a 0.2 microm nylon membrane. This system differs from commercially available systems by the presence of vanes on the disk which produce a very important increase in permeate flux while yielding excellent EPS transmission. For polymers produced under standard fermentation conditions (70 h at 30 degrees C), the mass flux rose to 650 g h(-1) m(-2) using a disk equipped with 2 mm vanes rotating at 2000 rpm against 380 g h(-1) m(-2) with a smooth disk at the same speed. The maximum flux observed was 1560 g h(-1) m(-2) with a 6-mm vanes disk rotating at 3000 rpm and a 36 degrees C broth. An interesting finding was that the permeate flux J(f) for various disks can be correlated by the same function of the mean shear stress at the membrane tau(wm) according to J(f) = 4.6 tau(wm) (0.717) for a 30 degrees C broth, showing that the effect of vanes is merely to increase the shear stress by raising the fluid core velocity between the membrane and the disk. With 6-mm vanes the core angular velocity was found to be 84% of disk velocity vs. 45% for a smooth disk. When the fermentation temperature was increased to 36 degrees C to produce a lower molecular weight polymer, the permeate flux rose by about 250%, much more than what could be expected from the reduction in permeate viscosity and followed the same power law with membrane shear stress as for 30 degrees C. The same device was equipped with a PES 50 kDa membrane to concentrate EPS by ultrafiltration. Permeate fluxes were of the order of 160 L h(-1) m(-2) at 2000 rpm and 30 degrees C with nearly complete EPS rejection. Finally, the net electrical power consumed by the disk was measured by subtracting the power consumed without fluid from the power during filtration at the same speed. This power increases with speed and with the presence of vanes, but since the gain provided by the vanes is very high, the specific energy per m(3) of permeate is minimal with the highest vanes tested (6 mm) and maximal for smooth disks.  相似文献   

5.
本文用特别设计的平面狭缝装置,获得稳定的平面Poisseuille流,对ADP诱导的正常人血小板血浆在不同剪切率下的聚集行为进行了实验研究。实验表明:在0<γ<100s~(-1)的范围内,〔ADP〕约1μM的条件下,当诱导时间t<10s时,血小板聚集率A与剪切率的依赖关系不明显;当t>10s时,γ越大,A越大;血小板聚集体的大小随距离X的增长而增长;血小板的聚集活性随时间的延长而降低,女性的血小板聚集率比男性的聚集率略大。  相似文献   

6.
Cross-linked enzyme crystals (CLECs) are a novel form of immobilized biocatalyst designed for application in industrial biotransformation processes. In this work we have investigated the mechanical stability of agitated CLEC suspensions in relation to the design and scale-up of bioconversions carried out in stirred-tank reactors. By careful control of the crystallization conditions yeast alcohol dehydrogenase I (YADHI) microcrystals of different size were first prepared having either an hexagonal (approximately 12 microm) or rod-shaped (approximately 4.6 microm) morphology. These were then cross-linked with glutaraldehyde to form CLECs. The rate of breakage of the CLEC suspensions was subsequently measured in a rotating disk shear device (total volume, 11 mL) by monitoring the change in crystal size distribution with time. This device is designed to mimic the shear and energy dissipation rates found in a range of process scale equipment and may be used to study the mechanical stability of any immobilized biocatalyst preparation. Experiments were performed as a function of the speed and duration of disk rotation, CLEC concentration (0.26-2.5 mg.mL(-1)) and energy dissipation rate (2.2 x 10(3) to 6.8 x 10(5) W.kg(-1)). No breakage of the rod-shaped CLECs was observed over the entire range of experimental conditions investigated. Breakage of the larger hexagonal-shaped CLECs did occur, however, at energy dissipation rates, epsilon(max), above 1.0 x 10(5) W.kg(-1), where the calculated length scale of turbulence was around 2.0 microm. Based on visual observation of the sheared CLEC suspensions and models of crystal breakage, it was concluded that breakage of the hexagonal-shaped CLECs occurred due to shear induced attrition. Measurement of the catalytic activity of both the hexagonal and rod-shaped CLECs showed no significant change in activity before and after shearing.  相似文献   

7.
Platelet aggregation plays a central role in pathological thrombosis, preventing healthy physiological blood flow within the circulatory system. For decades, it was believed that platelet aggregation was primarily driven by soluble agonists such as thrombin, adenosine diphosphate and thromboxane A2. However, recent experimental findings have unveiled an intriguing but complementary biomechanical mechanism—the shear rate gradients generated from flow disturbance occurring at sites of blood vessel narrowing, otherwise known as stenosis, may rapidly trigger platelet recruitment and subsequent aggregation. In our Nature Materials 2019 paper [1], we employed microfluidic devices which incorporated micro-scale stenoses to elucidate the molecular insights underlying the prothrombotic effect of blood flow disturbance. Nevertheless, the rheological mechanisms associated with this stenotic microfluidic device are poorly characterized. To this end, we developed a computational fluid dynamics (CFD) simulation approach to systematically analyze the hemodynamic influence of bulk flow mechanics and flow medium. Grid sensitivity studies were performed to ensure accurate and reliable results. Interestingly, the peak shear rate was significantly reduced with the device thickness, suggesting that fabrication of microfluidic devices should retain thicknesses greater than 50 µm to avoid unexpected hemodynamic aberration, despite thicker devices raising the cost of materials and processing time of photolithography. Overall, as many groups in the field have designed microfluidic devices to recapitulate the effect of shear rate gradients and investigate platelet aggregation, our numerical simulation study serves as a guideline for rigorous design and fabrication of microfluidic thrombosis models.  相似文献   

8.
The specific roles of mass transfer and fluid dynamic stresses on endothelial function, important in atherogenesis, are not known. Further, the effects of mass transfer and fluid dynamic stresses are difficult to separate because areas of “abnormal” mass transfer and “abnormal” wall shear stress tend to co-localize (where abnormal is defined as any deviation from the mass transfer rate or wall shear stress present in a long straight artery with the same flow rate and diameter). Our goal was to design a cell culture device which gives maximum separation between areas of abnormal shear stress and areas of abnormal mass transfer. We used design optimization principles to design a helical cell culture device. Using shear stress and mass transfer fields predicted by solving the governing equations, the area of the device which was exposed to low rates of mass transfer and normal levels of wall shear stress was determined. The design optimization method then maximized this area by varying the design variables, resulting in the optimum design. The optimum design had Reynolds number = 50, helical radius = 3.23 and helical pitch = 3.82. The area of the device which was exposed to low rates of mass transfer and regular levels of wall shear stress was about 4.5 times the inlet cross-sectional area of the device or about 5% of the device total internal surface area. An optimum design was successfully determined and the methodology used was shown to be robust. The area of the device which was exposed to low rates of mass transfer and regular levels of wall shear stress occurred in a defined region which should aid further experimental work.  相似文献   

9.
Supercoiled plasmid DNA is susceptible to fluid stress in large-scale manufacturing processes. A capillary device was used to generate controlled shear conditions and the effects of different stresses on plasmid DNA structure were investigated. Computational fluid dynamics (CFD) analysis was employed to characterize the flow environment in the capillary device and different analytical techniques were used to quantify the DNA breakage. It was found that the degradation of plasmid DNA occurred at the entrance of the capillary and that the shear stress within the capillary did not affect the DNA structure. The degradation rate of plasmids was well correlated with the average elongational strain rate or the pressure drop at the entrance region. The conclusion may also be drawn that laminar shear stress does not play a significant role in plasmid DNA degradation.  相似文献   

10.
Effects of interstitial fluid flow on osteoblasts were investigated. Intracellular cyclic adenosine monophosphate (cAMP) levels were monitored in cultured osteoblasts subjected to shear rates ranging from 10 to 3,500 sec-1. Cyclic AMP levels were significantly increased at all shear rates from 1 pmole/mg protein to 10-16 pmole/mg protein. Osteoblasts subjected to a shear rate of 430 sec-1 for 0.5-15 minutes exhibited elevated levels (12-fold) of intracellular cAMP, which were sustained throughout the perfusion period. Osteoblasts were three times more sensitive to flow stimulation than human umbilical vein endothelial cells and baby hamster kidney fibroblasts, which also displayed higher cAMP levels (4-fold) after exposure to flow. To distinguish streaming potential effects from shear stress effects, viscosity was increased 5-fold by addition of neutral dextran to the perfusing medium. Shear stress is a function of viscosity, and streaming potentials are not for a given shear rate. The mechanism of this cellular response to flow was shown to be shear stress dependent. Inhibition of cyclooxygenase by 20 microM ibuprofen completely inhibited the flow-dependent cAMP response, indicating the cAMP response is mediated by prostaglandins. Our results suggest that fluid flow induced by mechanical stress may be an important mediator of bone remodeling.  相似文献   

11.
Effect of high shear on proteins   总被引:5,自引:0,他引:5  
Shear is present in almost all bioprocesses and high shear is associated with processes involving agitation and emulsification. The purpose of this study is to investigate the effect of high shear and high shear rate on proteins. Two concentric cylinder-based shear systems were used. One was a closed concentric-cylinder shear device (CCSD) and the other was a homogenizer with a rotor/stator assembly. Mathematical modeling of these systems allowed calculation of the shear rate and shear. The CCSD generated low shear rates (a few hundred s(-1)), whereas the homogenizer could generate very high shear rates (> 10(5) s(-1)). High shear could be achieved in both systems by increasing the processing time. Recombinant human growth hormone (rhGH) and recombinant human deoxyribonuclease (rhDNase) were used as the model proteins in this study. It was found that neither high shear nor high shear rate had a significant effect on protein aggregation. However, a lower melting temperature and enthalpy were detected for highly sheared rhGH by using scanning microcalorimetry, presumably due to some changes in protein's conformation. Also, SDS-PAGE indicated the presence of low molecular-weight fragments, suggesting that peptide bond breakage occurred due to high shear. rhDNase was relatively more stable than rhGH under high shear. No conformational changes and protein fragments were observed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
The concentration profiles of adenosine diphosphate (ADP), thromboxane A2 (TxA2), thrombin, and von Willebrand factor (vWF) released extracellularly from the platelet granules or produced metabolically on the platelet membrane during thrombus growth, were estimated using finite element simulation of blood flow over model thrombi of various shapes and dimensions. The wall fluxes of these platelet-activating agents were estimated for each model thrombus at three different wall shear rates (100 s-1, 800 s-1, and 1,500 s-1), employing experimental data on thrombus growth rates and sizes. For that purpose, whole human blood was perfused in a parallel-plate flow chamber coated with type l fibrillar human collagen, and the kinetic data collected and analyzed by an EPl-fluorescence video microscopy system and a digital image processor. It was found that thrombin concentrations were large enough to cause irreversible platelet aggregation. Although heparin significantly accelerated thrombin inhibition by antithrombin lll, the remaining thrombin levels were still significantly above the minimum threshold required for irreversible platelet aggregation. While ADP concentrations were large enough to cause irreversible platelet aggregation at low shear rates and for small aggregate sizes, TxA2 concentrations were only sufficient to induce platelet shape change over the entire range of wall shear rates and thrombi dimensions studied. Our results also indicated that the local concentration of vWF multimers released from the platelet alpha-granules could be sufficient to modulate platelet aggregation at low and intermediate wall shear rates (less than 1,000 s-1). The sizes of standing vortices formed adjacent to a growing aggregate and the embolizing stresses and the torque, acting at the aggregate surface, were also estimated in this simulation. It was found that standing vortices developed on both sides of the thrombus even at low wall shear rates. Their sizes increased with thrombus size and wall shear rate, and were largely dependent upon thrombus geometry. The experimental observation that platelet aggregation occurred predominantly in the spaces between adjacent thrombi, confirmed the numerical prediction that those standing vortices are regions of reduced fluid velocities and high concentrations of platelet-activating substances, capable of trapping and stimulating platelets for aggregation. The average shear stress and normal stress, as well as the torque, acting to detach the thrombus, increased with increasing wall shear rate. Both stresses were found to be nearly independent of thrombus size and only weekly dependent upon thrombus geometry. Although both stresses had similar values at low wall shear rates, the average shear stress became the predominant embolizing stress at high wall shear rates.  相似文献   

13.
In most applications of biotechnology and downstream processing proteins are exposed to fluid stresses in various flow configurations which often lead to the formation of unwanted protein aggregates. In this paper we present physical degradation experiments for proteins under well-defined flow conditions in a four-roll apparatus. The flow field was characterized numerically by computational fluid dynamics (CFD) and experimentally by particle image velocimetry (PIV). The local shear strain rate as well as the local shear and elongation rate was used to characterize the hydrodynamic stress environment acting on the proteins. Lysozyme was used as a model protein and subjected to well-defined fluid stresses in high and low stress environment. By using in situ turbidity measurements during stressing the aggregate formation was monitored directly in the fluid flow. An increase in absorbance at 350 nm was attributed to a higher content of visible particles (>1 μm). In addition to lysozyme, the formation of aggregates was confirmed for two larger proteins (bovine serum albumin and alcohol dehydrogenase). Thus, the presented experimental setup is a helpful tool to monitor flow-induced protein aggregation with high reproducibility. For instance, screening experiments for formulation development of biopharmaceuticals for fill and finish operations can be performed in the lab-scale in a short time-period if the stress distributions in the application are transferred and applied in the four-roll mill.  相似文献   

14.
The development of freshwater multispecies biofilms at solid-liquid interfaces occurs both in quiescent waters and under conditions of high shear rates. However, the influence of hydrodynamic shear rates on bacterial biofilm diversity is poorly understood. We hypothesized that different shear rates would significantly influence biofilm diversity and alter the relative proportions of coaggregating and autoaggregating community isolates. In order to study this hypothesis, freshwater biofilms were developed at five shear rates (<0.1 to 305 S(-1)) in a rotating concentric cylinder reactor fed with untreated potable water. Eubacterial diversity was assessed by denaturing gradient gel electrophoresis (DGGE) and culturing on R2A agar. Fifty morphologically distinct biofilm strains and 16 planktonic strains were isolated by culturing and identified by partial 16S rRNA gene sequencing, and their relatedness was determined by the construction of a neighbor-joining phylogenetic tree. Phylogenetic and DGGE analyses showed an inverse relationship between shear rate and bacterial diversity. An in vitro aggregation assay was used to assess the relative proportions of coaggregating and autoaggregating species from each biofilm. The highest proportion of autoaggregating bacteria was present at high shear rates (198 to 305 S(-1)). The intermediate shear rate (122 S(-1)) selected for the highest proportion of coaggregating bacteria (47%, or 17 of a possible 36 coaggregation interactions). Under static conditions (<0.1 S(-1)), 41 (33%) of a possible 125 coaggregation interactions were positive. Few coaggregation (3.3%) or autoaggregation (25%) interactions occurred between the 16 planktonic strains. In conclusion, these data show that shear rates affect biofilm diversity as well as the relative proportions of aggregating bacteria.  相似文献   

15.
The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α‐lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air‐liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid‐induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 108 s?1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins.
  相似文献   

16.
To further improve our understanding of trabecular bone mechanical behavior in torsion, our objective was to determine the effects of strain rate, apparent density, and presence of bone marrow on trabecular bone shear material properties. Torsion tests of cylindrical trabecular bone specimens from sheep lumbar vertebrae with and without bone marrow were conducted. The bones with marrow were divided into two groups and tested at shear strain rates of 0.002 and 0.05s(-1) measured at the specimen perimeter. The bones without marrow were divided into three groups and tested at shear strain rates of 0.002, 0.015, and 0.05s(-1). Comparing the results of bones with and without marrow tested at low (0.002s(-1)) and high (0.05s(-1)) strain rates, presence of bone marrow did not have any significant effect on trabecular bone shear modulus and strength. In specimens without marrow, power relationships were used to define shear strength and modulus as dependent variables in terms of strain rate and apparent density as independent variables. The shear strength was proportional to the apparent density raised to the 1.02 power and to the strain rate raised to the 0.13 power. The shear modulus was proportional to the apparent density raised to the 1.08 power and to the strain rate raised to the 0.07 power. This study provides further insight into the mechanism of bone failure in trauma as well as failure at the interface between bone and implants as it relates to prediction of trabecular bone shear properties.  相似文献   

17.
There is concern that shear could cause protein unfolding or aggregation during commercial biopharmaceutical production. In this work we exposed two concentrated immunoglobulin‐G1 (IgG1) monoclonal antibody (mAb, at >100 mg/mL) formulations to shear rates between 20,000 and 250,000 s?1 for between 5 min and 30 ms using a parallel‐plate and capillary rheometer, respectively. The maximum shear and force exposures were far in excess of those expected during normal processing operations (20,000 s?1 and 0.06 pN, respectively). We used multiple characterization techniques to determine if there was any detectable aggregation. We found that shear alone did not cause aggregation, but that prolonged exposure to shear in the stainless steel parallel‐plate rheometer caused a very minor reversible aggregation (<0.3%). Additionally, shear did not alter aggregate populations in formulations containing 17% preformed heat‐induced aggregates of a mAb. We calculate that the forces applied to a protein by production shear exposures (<0.06 pN) are small when compared with the 140 pN force expected at the air–water interface or the 20–150 pN forces required to mechanically unfold proteins described in the atomic force microscope (AFM) literature. Therefore, we suggest that in many cases, air‐bubble entrainment, adsorption to solid surfaces (with possible shear synergy), contamination by particulates, or pump cavitation stresses could be much more important causes of aggregation than shear exposure during production. Biotechnol. Bioeng. 2009;103: 936–943. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Metabolic effects of the medium supplements, fetal bovine serum (FBS), Pluronic F68, and bovine serum albumin (BSA) were compared for agitated bioreactor cultures of hybridoma cells. Agitation speeds up to 600 rpm, without entrainment of gas bubbles by sparging or vortex formation, allowed examination of cell interactions with turbulent fluid forces. For cultures in FBS-supplemented RPMI media, there was no significant effect of intense turbulent fluid shear on cell growth, metabolism, or antibody, production. Serum-free cultures (Pluronic F68 or BSA supplements) at 600 rpm demonstrated greatly increased glycolysis rates during exponential growth relative to controls. Nutrient limitations caused increased rates of decline of the viable cell concentrations and a reduction in final antibody titers by around 70%. The Pluronic F68 and BSA supplements did not lead to cell protection by modifying metabolism under conditions of intense turbulent fluid shear. Supplementing the protein-free medium with FBS reduced glycolysis rates in exponential growth phase, but this did not prevent a high rate of viable cell decline and low antibody titers. We concluded that FBS does not have a metabolic effect on cells subjected to intense turbulent fluid shear. Although the agitation conditions employed in this study were more intense than generally required for agitated bioreactor culture of hybridomas, we have demonstrated the importance of considering metabolic effects of turbulent fluid forces on cultures using nutrient-rich basal media, in addition to the considerations of gas bubble effects described by other workers. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
We have modeled platelet aggregation in a linear shear flow by accounting for two body collision hydrodynamics, platelet activation and receptor biology. Considering platelets and their aggregates as unequal-sized spheres with DLVO interactions (psi(platelet) = -15 mV, Hamaker constant = 10(-19) J), detailed hydrodynamics provided the flow field around the colliding platelets. Trajectory calculations were performed to obtain the far upstream cross-sectional area and the particle flux through this area provided the collision frequency. Only a fraction of platelets brought together by a shearing fluid flow were held together if successfully bound by fibrinogen cross-bridging GPIIb/IIIa receptors on the platelet surfaces. This fraction was calculated by modeling receptor-mediated aggregation using the formalism of Bell (Bell, G. I. 1979. A theoretical model for adhesion between cells mediated by multivalent ligands. Cell Biophys. 1:133-147) where the forward rate of bond formation dictated aggregation during collision and was estimated from the diffusional limited rate of lateral association of receptors multiplied by an effectiveness factor, eta, to give an apparent rate. For a value of eta = 0.0178, we calculated the overall efficiency (including both receptor binding and hydrodynamics effects) for equal-sized platelets with 50,000 receptors/platelet to be 0.206 for G = 41.9 s(-1), 0.05 for G = 335 s(-1), and 0.0086 for G = 1920 s(-1), values which are in agreement with efficiencies determined from initial platelet singlet consumption rates in flow through a tube. From our analysis, we predict that bond formation proceeds at a rate of approximately 0.1925 bonds/microm2 per ms, which is approximately 50-fold slower than the diffusion limited rate of association. This value of eta is also consistent with a colloidal stability of unactivated platelets at low shear rates. Fibrinogen was calculated to mediate aggregation quite efficiently at low shear rates but not at high shear rates. Although secondary collisions (an orbitlike trajectory) form only a small fraction of the total number of collisions, they become important at high shear rates (>750 s(-1)), as these are the only collisions that provide enough time to result in successful aggregate formation mediated by fibrinogen. The overall method provides a hydrodynamic and receptor correction of the Smoluchowski collision kernel and gives a first estimate of eta for the fibrinogen-GPIIb/IIIa cross-bridging of platelets. We also predict that secondary collisions extend the shear rate range at which fibrinogen can mediate successful aggregation.  相似文献   

20.
The effects of cyclical expansion and elaxation of the vessel wall on endothelial cell metabolism have been modeled using a uniaxial strain device and cultured endothelial cell monolayers. Also, the effects of stopping and then restarting cyclic strain on metabolite secreation rates were determined. Secretion rates of prostacyclin (PGI(2)), endothelin, tissue plasminogen activator (t-PA), and plasminogen activator inhibitor-type 1 (PaI-1) by endothelial cells were constant over24-h periods The secreation of both PGI(2) and endothelin was enhanced in cells exposed to high physiological levels of cyclical strain (10% at 1Hz) compared with controls, while tPA production was unaltered. These results were true for both human and bovine endothelial cells. Characterization of the response of human endothelial cells to cyclical strain made evaluation of stretch effects on PAl-1 secretion possible. A nearly twofold increase in PAl-1 secretion by cells exposed to arterial levels of strain was observed. Endothelin secretion remained elevated even after strain was stopped for 12 h, while PGl(2) secretion returned to control values upon cessation of cyclic stretch. These results indicate that physiological levels of cyclic mechanical strain ca significantly modulate secretion of vasoactive metabolited form endothelial cells. The changes sen secretion are, in some cases, quite different from those caused by arterial levels of fluid shear stress exposure. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号