首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Since our previous study showed that the gene expression level of beta-1,4-galactosyltransferase (beta-1,4-GalT) V is only increased in mouse NIH3T3 transformant and that beta-1,4-GalT V preferentially galactosylates the GlcNAcbeta1 --> 6Man branch of oligosaccharides [Shirane et al. (1999) Biochem. Biophys. Res. Commun. 265, 434-438], whether its gene expression is correlated with malignant transformation was investigated. Northern blot analysis of beta-1, 4-GalTs I, II, III, IV, V, and VI and N-acetylglucosaminyltransferase (GlcNAcT)V in human cancer cell lines showed that the gene expression levels of beta-1,4-GalT V but not other beta-1,4-GalTs are strongly correlated with those of GlcNAcT V whose activity was shown to increase by malignant transformation. These results indicate that beta-1,4-GalT V is involved in the galactosylation of highly branched oligosaccharides characteristic of malignantly transformed cells.  相似文献   

3.
4.
In spite of marked changes in the glycosylation upon malignant transformation of cells, no biological significance of beta-1, 4-galactosyltransferase (beta-1,4-GalT) activities has been elucidated. When beta-1,4-GalT activities toward 1 mM GlcNAcbeta-S-pNP were determined using homogenates of NIH3T3 and its transformant, MTAg, MTAg contained 1.3 times higher activities. Northern blot analysis, however, revealed that the beta-1,4-GalT V gene expression increases by three times with a decrease in that of beta-1,4-GalT II by one-fifth and without significant changes in those of other beta-1,4-GalTs in MTAg. Analysis of beta-1,4-GalT V acceptor-specificity showed that the GlcNAcbeta1-->6Man group of the GlcNAcbeta1-->6(GlcNAbeta1-->2)Manalpha1- branch is galactosylated. These results indicate that changes in beta-1,4-GalT II and V activities are important for the altered glycosylation.  相似文献   

5.
6.
7.
8.
9.
Sp1 transactivation of the TCL1 oncogene   总被引:3,自引:0,他引:3  
  相似文献   

10.
11.
12.
Guo S  Sato T  Shirane K  Furukawa K 《Glycobiology》2001,11(10):813-820
Several studies showed that Sf-9 cells can synthesize the galactosylated N-linked oligosaccharides if beta-1,4-galactosyltransferase (beta-1,4-GalT) is supplied. The full-length human beta-1,4-GalT I, II, III, IV, V, and VI cDNAs were independently transfected into Sf-9 cells, and the galactosylation of endogenous membrane glycoproteins was examined by lectin blot analysis using Ricinus communis agglutinin-I (RCA-I), which preferentially interacts with oligosaccharides terminated with Galbeta1-->4GlcNAc group. Several RCA-I-reactive bands appeared in all of the gene-transfected cells, and disappeared on treatment of blots with beta-1,4-galactosidase or N-glycanase prior to incubation with lectin. Introduction of the antisense beta-1,4-GalT II and V cDNAs separately into human colorectal adenocarcinoma SW480 cells, in which beta-1,4-GalT I, II, and V genes were expressed, resulted in the reduction of RCA-I binding toward N-linked oligosaccharides of the membrane glycoproteins. Differences were found in their K(m) values toward UDP-Gal and GlcNAcbeta-S-pNP and in their acceptor specificities toward oligosaccharides with the GlcNAcbeta1-->4(GlcNAcbeta1-->2)Man branch and with the GlcNAcbeta1-->6(GlcNAcbeta1-->2)Man branch. These results indicate that beta-1,4-GalTs II, III, IV, V, and VI are involved in the N-linked oligosaccharide biosynthesis cooperatively but not in a redundant manner with beta-1,4-GalT I within cells.  相似文献   

13.
Rapid senescence was induced into human lung adenocarcinoma A549 cells by transforming growth factor-beta1. Lectin blot analysis of membrane glycoprotein samples showed that the binding of Ricinus communis agglutinin-I to protein bands increased markedly while those of other lectins together with protein components did not change significantly with senescence. This indicates that the beta-1,4-galactosylation of N-linked oligosaccharides is stimulated by rapid senescence. Analysis of the enzymatic background of senescence showed 1.5 times higher beta-1,4-galactosyltransferase (beta-1,4-GalT) activity and 2-5 times higher expression levels of beta-1,4-GalT II, III, V, and VI genes are associated with rapid senescence. Incubation of the cells on RCA-I-coated plates in the absence of fetal calf serum showed that the viability of the senescent cells is half that of the control cells. Therefore, it is hypothesized that galactose residues expressed by rapid senescent can induce a lethal signal in cells if they interact with appropriate receptors.  相似文献   

14.
15.
In the present study we present evidence for the critical role of Sp1 in the mechanism of transactivation of the human cell cycle inhibitor p21(WAF1/Cip1) (p21) gene promoter by the tumor suppressor p53 protein. We found that the distal p53-binding site of the p21 promoter acts as an enhancer on the homologous or heterologous promoters in hepatoma HepG2 cells. In transfection experiments, p53 transactivated the p21 promoter in HaCaT cells that express Sp1 but have a mutated p53 form. In contrast, p53 could not transactivate the p21 promoter in the Drosophila embryo-derived Schneider's SL2 cells that lack endogenous Sp1 or related factors. Cotransfection of SL2 cells with p53 and Sp1 resulted in a synergistic transactivation of the p21 promoter. Synergistic transactivation was greatly decreased in SL2 cells and HaCaT cells by mutations in either the p53-binding site or in the -82/-77 Sp1-binding site indicating functional cooperation between Sp1 and p53 in the transactivation of the p21 promoter. Synergistic transactivation was also decreased by mutations in the transactivation domain of p53. Physical interactions between Sp1 and p53 proteins were established by glutathione S-transferase pull-down and coimmunoprecipitation assays. By using deletion mutants we found that the DNA binding domain of Sp1 is required for its physical interaction with p53. In conclusion, Sp1 must play a critical role in regulating important biological processes controlled by p53 via p21 gene activation such as DNA repair, cell growth, differentiation, and apoptosis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号