首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various definitions of coefficients in metabolic control analysis are examined with respect to their theoretical consistency and practical applicability. We suggest agreement upon a definition for control coefficients which is clearly distinct from that for response coefficients, in such a way that the former describe inherent properties of the metabolic system while the latter refer to the influence of special parameters. Advantages and drawbacks of using normalized or non-normalized control coefficients are studied. It is shown that normalized control coefficients have the advantage of being invariant to a different rescaling of the particular fluxes. We demonstrate that some problems are easier to tackle if the consistency of time-independent control coefficients with their time-dependent counterparts is taken into account. It is shown that the matrix of flux control coefficients is an indempotent matrix. This allows an interpretation in terms of the transduction of the effect of parameter perturbations. Several aspects of the experimental measurement of control coefficients are discussed, with special reference to the different definitions.  相似文献   

2.
Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group (flux, as well as concentration) control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, we demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

3.
An overview of published approaches for the metabolic flux control analysis of branch points revealed that often not all fundamental constraints on the flux control coefficients have been taken into account. This has led to contradictory statements in literature on the minimum number of large perturbation experiments required to estimate the complete set of flux control coefficients C(J) for a metabolic branch point. An improved calculation procedure, based on approximate Lin-log reaction kinetics, is proposed, providing explicit analytical solutions of steady state fluxes and metabolite concentrations as a function of large changes in enzyme levels. The obtained solutions allow direct calculation of elasticity ratios from experimental data and subsequently all C(J)-values from the unique relation between elasticity ratio's and flux control coefficients. This procedure ensures that the obtained C(J)-values satisfy all fundamental constraints. From these it follows that for a three enzyme branch point only one characterised or two uncharacterised large flux perturbations are sufficient to obtain all C(J)- values. The improved calculation procedure is illustrated with four experimental cases.  相似文献   

4.
Existing theorems from the analysis of metabolic control have been taken and embedded in a simple matrix algebra procedure for calculating the flux control coefficients of enzymes (formerly known as sensitivities) in a metabolic pathway from their kinetic properties (their elasticities). New theorems governing the flux control coefficients of branched pathways and substrate cycles have been derived to allow the procedure to be applied to complex pathway configurations. Modifications to the elasticity terms used in the equations have been theoretically justified so that the method remains valid for pathways with conserved metabolites (for example, the adenine nucleotide pool or the intermediates of a catalytic cycle such as the tricarboxylic acid cycle) or with pools of metabolites kept very near to equilibrium by very rapid reactions. The matrix equations generated using these theorems and relationships may be solved algebraically or numerically. Algebraic solutions have been used to determine the factors responsible for the degree of amplification of flux control coefficients by substrate cycles and to show that it is possible to derive expressions for the elasticities of a group of enzymes.  相似文献   

5.
Cell protein occupies 15-35% of cell volume. This level is argued to be the maximum compatible with cell function. Because of this constraint, selection pressure during evolution is likely to have maximized pathway fluxes for minimum total protein level. Pathways optimized in this way are shown to have the following characteristics: (1) the "simple" flux control coefficients of all enzymes are equal, (2) the normal flux control coefficients depend on the relative kinetic constants of the enzymes, such that enzymes with low specific activity are present at relatively high levels and have high flux control, (3) the normal flux control coefficients are proportional to enzyme levels. A single rate limiting step located at the first step in a pathway is likely to be inefficient in terms of protein levels, and the major metabolic pathways are therefore expected to have control distributed throughout the pathway. This has important implications for metabolic control.  相似文献   

6.
7.
Basic quantitative parameters of control in a metabolic system are considered: control coefficients of enzymes with respect to metabolic fluxes and concentrations, and in the case when there are conservation laws, the response coefficients of metabolic fluxes and concentrations to changes in the conserved sums of metabolite concentrations (e. g. conserved moieties). Relationships are obtained which generalize the well known connectivity relations for the case of metabolites binding by conservation laws. Additional relationships are obtained which complement the set of connectivity relations up to the complete system of equations for determining all the control coefficients. The control coefficients are expressed through the enzyme elasticity coefficients, steady state metabolic fluxes and concentrations. Formulas are derived which express response coefficients of flux and concentrations through the enzyme control and elasticity coefficients and metabolite concentrations.  相似文献   

8.
Flux control coefficients express in quantitative terms the extent to which the steady state flux through a metabolic pathway is controlled by a particular parameter. Enzyme flux control coefficients can be calculated using matrix algebra methods which express the control coefficients in terms of parameters which can be determined experimentally (enzyme elasticities, flux ratios, metabolite ratios). This paper describes an algorithm based on a 'constraint' matrix which enables expressions for enzyme control coefficients to be written for pathways of any complexity.  相似文献   

9.
10.
The extent to which an enzyme controls a flux has been defined as the effect on that flux of a small modulation of the activity of that enzyme divided by the magnitude of the modulation. We here show that in pathways with metabolic channelling or high enzyme concentrations and conserved moieties involving both enzymic and non-enzymic species, this definition is ambiguous; the magnitude of the corresponding flux control coefficient depends on how the enzyme activity is modulated. This is illustrated with two models of biochemically relevant pathways, one in which dynamic metabolite channelling plays a role, and one with a moiety-conserved cycle. To avoid such ambiguity, we view biochemical pathways in a more detailed manner, i.e., as a network of elemental steps. We define 'elemental control coefficients' in terms of the effect on a flux of an equal modulation of the forward and reverse rate constant of any such elemental step (which may correspond to transitions between enzyme states). This elemental control coefficient is independent of the method of modulation. We show how metabolic control analysis can proceed when formulated in terms of the elemental control coefficients and how the traditional control coefficients are related to these elemental control coefficients. An 'impact' control coefficient is defined which quantifies the effect of an activation of all elemental processes in which an enzyme is involved. It equals the sum of the corresponding elemental control coefficients. In ideal metabolic pathways this impact control coefficient reduces to the traditional flux control coefficient. Differences between the traditional control coefficients are indicative of non-ideality of a metabolic pathway, i.e. of channelling or high enzyme concentrations.  相似文献   

11.
Cellular functions are ultimately linked to metabolic fluxes brought about by thousands of chemical reactions and transport processes. The synthesis of the underlying enzymes and membrane transporters causes the cell a certain 'effort' of energy and external resources. Considering that those cells should have had a selection advantage during natural evolution that enabled them to fulfil vital functions (such as growth, defence against toxic compounds, repair of DNA alterations, etc.) with minimal effort, one may postulate the principle of flux minimization, as follows: given the available external substrates and given a set of functionally important 'target' fluxes required to accomplish a specific pattern of cellular functions, the stationary metabolic fluxes have to become a minimum. To convert this principle into a mathematical method enabling the prediction of stationary metabolic fluxes, the total flux in the network is measured by a weighted linear combination of all individual fluxes whereby the thermodynamic equilibrium constants are used as weighting factors, i.e. the more the thermodynamic equilibrium lies on the right-hand side of the reaction, the larger the weighting factor for the backward reaction. A linear programming technique is applied to minimize the total flux at fixed values of the target fluxes and under the constraint of flux balance (= steady-state conditions) with respect to all metabolites. The theoretical concept is applied to two metabolic schemes: the energy and redox metabolism of erythrocytes, and the central metabolism of Methylobacterium extorquens AM1. The flux rates predicted by the flux-minimization method exhibit significant correlations with flux rates obtained by either kinetic modelling or direct experimental determination. Larger deviations occur for segments of the network composed of redundant branches where the flux-minimization method always attributes the total flux to the thermodynamically most favourable branch. Nevertheless, compared with existing methods of structural modelling, the principle of flux minimization appears to be a promising theoretical approach to assess stationary flux rates in metabolic systems in cases where a detailed kinetic model is not yet available.  相似文献   

12.
Predicting metabolic fluxes of a genetically engineered organism is an important step toward rational pathway design. However, because of various regulatory mechanisms, which are complex, often ill-characterized, and sometimes undiscovered, predicting metabolic fluxes using kinetic simulation is difficult. We propose to incorporate regulatory constraints in flux calculation to allow prediction of the steady-state fluxes without complete kinetics. The regulatory constraint, in its linear form, is derived from the dynamic metabolic control theory and involves the flux control coefficients. It is shown that with these constraints, the responses to metabolic perturbation can be predicted. Conversely, the regulatory constraints and the control coefficients can be determined by comparing the experimental data with the prediction. Therefore, this approach may offer a practical direction toward prediction of fluxes for metabolically engineered organisms.  相似文献   

13.
The presumably high potential of a holistic design approach for complex biochemical reaction networks is exemplified here for the network of tryptophan biosynthesis from glucose, a system whose components have been investigated thoroughly before. A dynamic model that combines the behavior of the trp operon gene expression with the metabolic network of central carbon metabolism and tryptophan biosynthesis is investigated. This model is analyzed in terms of metabolic fluxes, metabolic control, and nonlinear optimization. We compare two models for a wild-type strain and another model for a tryptophan producer. An integrated optimization of the whole network leads to a significant increase in tryptophan production rate for all systems under study. This enhancement is well above the increase that can be achieved by an optimization of subsystems. A constant ratio of control coefficients on tryptophan synthesis rate has been identified for the models regarding or disregarding trp operon expression. Although we found some examples where flux control coefficients even contradict the trends of enzyme activity changes in an optimized profile, flux control can be used as an indication for enzymes that have to be taken into account in optimization.  相似文献   

14.
Metabolic control analysis can relate control properties of an intact system to kinetic properties (elasticity coefficients) of the enzymes within that system. The method formulating the former as matrix inverse of the latter is elaborated here for the general case and founded in standard metabolic control theory. Then a method is developed that accomplishes the reverse: it is shown that a matrix containing all elasticity coefficients and information concerning the pathway structure equals the inverse of a matrix containing flux and concentration control coefficients. As a consequence, by measuring the control properties of an intact system, one is able to deduce its in situ pathway structure and enzyme kinetic properties: This solves the ever-present question of whether the kinetic properties of enzymes in their isolated state differ from those under the conditions prevailing in the cell.  相似文献   

15.
Because of its importance to cell function, the free-energy metabolism of the living cell is subtly and homeostatically controlled. Metabolic control analysis enables a quantitative determination of what controls the relevant fluxes. However, the original metabolic control analysis was developed for idealized metabolic systems, which were assumed to lack enzyme-enzyme association and direct metabolite transfer between enzymes (channelling). We here review the recently developed molecular control analysis, which makes it possible to study non-ideal (channelled, organized) systems quantitatively in terms of what controls the fluxes, concentrations, and transit times. We show that in real, non-ideal pathways, the central control laws, such as the summation theorem for flux control, are richer than in ideal systems: the sum of the control of the enzymes participating in a non-ideal pathway may well exceed one (the number expected in the ideal pathways), but may also drop to values below one. Precise expressions indicate how total control is determined by non-ideal phenomena such as ternary complex formation (two enzymes, one metabolite), and enzyme sequestration. The bacterial phosphotransferase system (PTS), which catalyses the uptake and concomitant phosphorylation of glucose (and also regulates catabolite repression) is analyzed as an experimental example of a non-ideal pathway. Here, the phosphoryl group is channelled between enzymes, which could increase the sum of the enzyme control coefficients to two, whereas the formation of ternary complexes could decrease the sum of the enzyme control coefficients to below one. Experimental studies have recently confirmed this identification, as well as theoretically predicted values for the total control. Macromolecular crowding was shown to be a major candidate for the factor that modulates the non-ideal behaviour of the PTS pathway and the sum of the enzyme control coefficients.  相似文献   

16.
17.
18.
Bost B  Dillmann C  de Vienne D 《Genetics》1999,153(4):2001-2012
The fluxes through metabolic pathways can be considered as model quantitative traits, whose QTL are the polymorphic loci controlling the activity or quantity of the enzymes. Relying on metabolic control theory, we investigated the relationships between the variations of enzyme activity along metabolic pathways and the variations of the flux in a population with biallelic QTL. Two kinds of variations were taken into account, the variation of the average enzyme activity across the loci, and the variation of the activity of each enzyme of the pathway among the individuals of the population. We proposed analytical approximations for the flux mean and variance in the population as well as for the additive and dominance variances of the individual QTL. Monte Carlo simulations based on these approximations showed that an L-shaped distribution of the contributions of individual QTL to the flux variance (R(2)) is consistently expected in an F(2) progeny. This result could partly account for the classically observed L-shaped distribution of QTL effects for quantitative traits. The high correlation we found between R(2) value and flux control coefficients variance suggests that such a distribution is an intrinsic property of metabolic pathways due to the summation property of control coefficients.  相似文献   

19.
Klipp E  Heinrich R 《Bio Systems》1999,54(1-2):1-14
The structures of biochemical pathways are assumed to be determined by evolutionary optimization processes. In the framework of mathematical models, these structures should be explained by the formulation of optimization principles. In the present work, the principle of minimal total enzyme concentration at fixed steady state fluxes is applied to metabolic networks. According to this principle there exists a competition of the reactions for the available amount of enzymes such that all biological functions are maintained. In states which fulfil these optimization criteria the enzyme concentrations are distributed in a non-uniform manner among the reactions. This result has consequences for the distribution of flux control. It is shown that the flux control matrix c, the elasticity matrix epsilon, and the vector e of enzyme concentrations fulfil in optimal states the relations c(T)e = e and epsilon(T)e = 0. Starting from a well-balanced distribution of enzymes the minimization of total enzyme concentration leads to a lowering of the SD of the flux control coefficients.  相似文献   

20.
An attempt of a comprehensive treatment of the theory of metabolic control is presented. The introductory section giving an outline of the early development of the theory, is followed by definitions quantifying the control in the metabolic system. By means of the perturbation method the complete system of equations is obtained which allows one to express all the enzyme control coefficients ("global" coefficients) through the elasticity coefficients characterizing kinetic properties of individual enzymes ("local" coefficients) and through the steady-state values of metabolic fluxes and concentrations. It is shown how connectivity relations between global and local coefficients should be modified when conserved sums of intermediates are present in the system. A new theorem is derived, it allows one to express the global response of the system to any change in the external parameter (such as external effector concentration, or temperature, pH, ionic strength, ets.) through the control coefficients and local responses of individual reaction steps. Explicit formulas are derived for response coefficients of the fluxes and concentrations to changes in the conserved sums of intermediates, which express the values of these global coefficients through the control and elasticity coefficients of enzymes and steady-state pools. The results obtained comprise as a special case all the results published so far in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号