首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
SUMMARY. 1. Effects of copper on species composition and production of benthic insects in an oligotrophic stream dosed at low concentrations (2.5-15 μg 1-1 Cur; approximately 12-75 ng 1-1 Cu2+) were determined. Dosing was initially in autumn-early winter when peak densities of many species occur. It was resumed the following summer near the time of egg hatch of most species and continued through the remaining aquatic stages of univoltine and multivoltine taxa.  相似文献   

2.
Among univoltine insects that experience diapause, differences in emergence timing between adult males and females are expected to be dictated by sex‐specific developmental factors. In multivoltine insects without a diapause, there is often an additional relationship between the date of oviposition and the date of adult emergence. Differences between male and female emergence timing in the latter case can therefore be influenced by female sex‐allocation decisions. In the present study, it is shown that eggs of a univoltine parasitoid wasp Diachasma alloeum Muesebeck (Hymenoptera: Braconidae) that are laid earlier also eclose earlier during the subsequent year, independent of (although complementary to) sex‐related differences in development time. The implications of this pattern for sex allocation decisions by female univoltine parasitoids are discussed.  相似文献   

3.
The growth of aquatic insects in a small mountain stream was studied with emphasis on water temperature. Growth of the five dominant species was examined in relation to degree-days. This measure accounts for time and the minimum temperature necessary for insect growth. All species showed reduced specific growth rates with lower temperatures, but some (Ephemerella dorothea, Leuctra tenella, Neumoura wui) did not stop growing at even the lowest water temperatures. Both Diplectrona modesta and Paraleptophlebia assimilis had minimum growth temperatures. Studies demonstrated that the growth of stream insects is directly proportional to the number of degree-days experienced by a population.  相似文献   

4.
Overwintering larvae of multivoltine and univoltine populations of Leptalina unicolor were reared under various constant and fluctuating temperatures superimposed on a photoperiod of either 12 h of light and 12 h of darkness (LD 12:12) or LD 15:9. Diapause of the larvae terminated in midwinter (by early February). All the larvae of both populations pupated after two molts without feeding and the head capsule width of the final instar larvae was smaller than that of the penultimate instar ones. The photoperiod did not significantly affect larval development, but long‐day conditions (LD 15:9) hastened pupal development. The thermoperiod had a significant effect on the development of the multivoltine population. When multivoltine population larvae were kept under a low fluctuating temperature regime (cryophase/thermophase = 14/20°C), the period until adult eclosion was shorter than that under a constant temperature of 17°C. On the contrary, when larvae were kept under a high fluctuating temperature regime (24/30°C), the period until adult eclosion was longer than that under a constant temperature of 27°C. However, the univoltine population did not show such a reaction to the fluctuating temperature. The durations of final instar larva and pupa of the multivoltine population were shorter than those of the univoltine population. The developmental zeros of penultimate and final instar larvae and pupae of the univoltine population were lower than those of the multivoltine population. The head capsule width of penultimate instar larvae and the forewing length of adults of the univoltine population were larger than those of the multivoltine population for both sexes.  相似文献   

5.
The relative roles of genetics and developmental plasticity in creating phenotypes adapted to prevailing conditions are insufficiently understood. In potentially multivoltine temperate insects, individuals that do not enter diapause but develop directly into reproductive adults within the same season are severely time-constrained. Direct development is, however, under selection only if expressed in the wild. Thus, adaptive correlates of the direct development are expected to evolve and persist only in multivoltine populations. We studied the genetic and phenotypic components of variation in juvenile development in the geometrid moth Chiasmia clathrata from univoltine and bivoltine regions. Larvae were reared at two temperatures (14/20 °C) and densities (low/high) in a factorial split-brood experiment. High temperature and low density promoted direct development, the former condition being associated with a short development time, high growth rate and large body size. Genotypes of bivoltine origin had a higher propensity for direct development and seemingly expressed an exaggerated plastic response to increasing temperature compared to the ones from univoltine populations. Alternative life history phenotypes associated with the induced developmental pathway emerged only in the bivoltine region, direct development resulting in a short larval period, high growth rate and small size at 20 °C there. The degree of differentiation between the developmental pathways was insensitive to larval density; high density only decreased both development time and body size to a certain degree. We conclude that the differences between the pathways are not due to the induction of a particular pathway itself, but geographically varying selection pressures shape the correlation structure among life history traits and their pathway-specific expression.  相似文献   

6.
Abstract .Protein-fed Calliphora vicina , F1 offspring of wild flies in two cages with lower and higher fly densities showed variable delay in starting oocyte vitellogenesis at ambient semi-natural temperatures in warm July–August weather in 1996 and 1997 at Durham in northern England (54°45' N). The high-density flies in 1996 showed no delay, in that the thermal sum (degree-days) experienced was 133, comparable to 18°C constant, assuming the lower threshold for egg maturation to be 5°C. Low-density cages and flies in a large outdoor cage (2 m3) in both years showed delays in production of first eggs of 34 days (thermal sum 293 degree-days) in 1996 and 32 days (396 degree-days) in 1997, and longer delays for other individuals. Delays in egg production at low densities relative to high densities seem to be a group effect of unknown mechanism.  相似文献   

7.
Abstract:  Insect response to plant surface features is a critical step in host-finding and acceptance of herbivorous insects. The plant surface is usually covered with epicuticular waxes (EWs), which are not only involved in water physiology, but also provide resistance to insects. In the present work the probing behaviour and performance of the aphid Chaitophorus leucomelas Koch (Hemiptera: Aphididae) on dewaxed and waxed leaves of two poplar hybrids, [( Populus trichocarpa Torr. & Gray ×  Populus deltoides Bartram ex Marshall) ×  P. deltoides ] (TD × D) and [( P. trichocarpa  ×  Populus maximowiczii Henry) × ( P. trichocarpa  ×  P. maximowiczii )] (TM × TM), previously reported as susceptible and resistant, respectively, are described. Laboratory experiments showed that in naturally waxed leaves of the resistant hybrids, aphids devoted less time to probing and more time to non-probing behaviour when compared with their behaviour on susceptible hybrids. These differences were not present when leaves of these hybrids were experimentally dewaxed. A field experiment demonstrated that aphid reproductive performance was affected by hybrid genotype (higher in the TD × D) but not by EWs, although a trend of lower performance on dewaxed leaves in both hybrids was apparent. SEM analysis of EWs revealed micromorphological differences between both hybrids. These results support the idea that EWs affect aphid behaviour in poplars, with a rather slight impact on reproductive performance.  相似文献   

8.
Accurate models of temperature-dependent embryonic developmental rates are important to assess the effects of a changing climate on insect life cycles and to suggest methods of population management by habitat manipulation. Embryonic development determines the life cycle of many species of grasshoppers, which, in cold climates, spend two winters in the egg stage. Increasing temperatures associated with climate change in the subarctic could potentiate a switch to a univoltine life cycle. However, egg hatch could be delayed by maintaining a closed vegetative canopy, which would lower soil temperatures by shading the soil surface. Prediapause and postdiapause embryonic developmental rates were measured in the laboratory over a wide range of temperatures for Melanoplus borealis Fieber and Melanoplus sanguinipes F. (Orthoptera: Acrididae) A model was fit to the data and used to predict dates of egg hatch in the spring and prediapause development in the fall under different temperature regimens. Actual soil temperatures were recorded at several locations over 5 yr. To simulate climate warming, 2, 3, or 4°C was added to each hourly recorded temperature. Results suggest that a 2, 3, or 4°C increase in soil temperatures will result in eggs hatching ≈ 3, 5, or 7 d earlier, respectively. An increase of 3°C would be required to advance prediapause development enough to allow for a portion of the population to be univoltine in warmer years. To simulate shading, 2 and 4°C were subtracted from observed temperatures. A 4°C decrease in temperatures could potentially delay hatch by 8 d.  相似文献   

9.
The goal of this work was to study some characteristics of the egg phase of three species of citrus root weevils. The insects were collected from citrus plants in Itapetininga, SP, and brought to the Laboratório de Biologia de Insetos of ESALQ/USP, in Piracicaba, SP, where the species Naupactus cervinus (Boheman), Naupactus versatilis (Hustache) and Parapantomorus fluctuosus (Boheman) were kept. Duration and viability of the egg phase were evaluated, and the lower temperature threshold and thermal constant (K) were calculated for these species. The species of citrus root weevils showed different duration of egg phases. The egg phase ranged from 40.4 to 13.8 N. cervinus, from 38.7 to 20.0 days for N. versatilis, and from 35.0 to 13.8 days for P. fluctuosus, depending upon temperature. The temperature thresholds of this stage were 8.1, 8.3, and 9.9 masculineC at thermal constant was 385.7, 397.7 and 294.1 degree-days, for N. cervinus, N. versatilis and P. fluctuosus respectively. The duration of the egg phases of N. cervinus and N. versatilis were similar at the same temperatures and P. fluctuosus had a faster development than Naupactus spp. in all temperatures tested.  相似文献   

10.
The green stink bug, Acrosternum hilare (Say), and the harlequin bug, Murgantia histrionica (Hahn) (both Heteroptera: Pentatomidae), are pests of many economically important crops. Although both species have been studied extensively, until recently their relationships with symbiotic gut bacteria have remained unknown. The endosymbionts may be important, as other pentatomomorphan species harbor vertically transmitted gut bacteria that play an important role in the biology of their host insects. We report the role of gut symbiotic bacteria on the development and fitness of A. hilare and M. histrionica by comparing control insects with individuals that hatched from surface sterilized egg masses. We studied the life history of A. hilare and M. histrionica under laboratory conditions at 23 ± 2 °C and L16:D8, measuring nymphal mortality and development time, and estimating other demographic parameters. We also evaluated egg masses, nymphs, and adults of both species with diagnostic PCR primers for the presence of specific gut symbiotic bacteria for both treatments. Our results show that egg mass surface sterilization eliminates or reduces the prevalence of this bacterium-insect symbiosis in both species. Acrosternum hilare 's development time, survivorship, and other demographic parameters were negatively affected by surface sterilization of egg masses. Conversely, M. histrionica 's survivorship was marginally increased by clearing its symbiont infection during the first generation; however, mean generation time was significantly longer. Our data indicate that the degree of mutualism in this association for pentatomid species is variable, given that A. hilare requires its symbiont for adequate development and survival, whereas M. histrionica 's symbiont may not be required for development and survival under the experimental conditions used.  相似文献   

11.
Open field experiments with the blowfly, Calliphora vicina originating from the environs of St. Petersburg showed that the correlation between the rate of its preimaginal development under the natural conditions and the mean daily temperature could be very closely approximated by linear regression. The sum of effective temperatures required for development from the egg to the puparium constituted ca 140 degree-days and from the egg to the adult, ca 320 degree-days with the lower thresholds of 5.8 and 4.8°C, respectively. The minimum duration of development (6–8 days from the egg to the puparium and 16–20 days from the egg to the adult) was recorded during the period of the highest mean temperatures (22–23°C) from July 8 to August 15 of 2010 and 2011. The rate of development under natural thermorhythms was not siggnificantly different from that under the laboratory conditions at constant temperatures from 12 to 23°C.  相似文献   

12.
Life histories show genetic population-level variation due to spatial variation in selection pressures. Phenotypic plasticity in life histories is also common, facilitating fine-tuning of the phenotype in relation to the prevailing selection regime. In multivoltine (≥ 2 generations per year) insects, individuals following alternative developmental pathways (diapause/direct development) experience different selection regimes. We studied the genetic and phenotypic components of juvenile development in Cabera exanthemata (Lepidoptera: Geometridae) in a factorial split-brood experiment. F(2) offspring of individuals originating from populations in northern and central Finland were divided among manipulations defined by temperature (14°C/20°C) and day length (24 h/15 h). Short day length invariably induced diapause, whereas continuous light almost invariably induced direct development in both regions, although northern populations are strictly univoltine in the wild. Individuals from northern Finland had higher growth rates, shorter development times and higher pupal masses than individuals from central Finland across the conditions, indicating genetic differences between regions. Individuals that developed directly into adults tended to have higher growth rates, shorter development times and higher pupal masses than those entering diapause, indicating phenotypic plasticity. Temperature-induced plasticity was substantial; growth rate was much higher, development time much shorter and pupal mass higher at 20°C than at 14°C. The degree of plasticity in relation to developmental pathway was pronounced at 20°C in growth rate and development time and at 14°C in pupal mass, emphasizing multidimensionality of reaction norms. The observed genetic variation and developmental plasticity seem adaptive in relation to time-stress due to seasonality.  相似文献   

13.
The paper reviews the diversity of seasonal cycles known in stink bugs (Heteroptera, Pentatomidae) from the temperate zone and is based on the data of 43 pentatomid species studied in detail up to date (Saulich and Musolin, 2011). All the seasonal cycles realized by pentatomids in the temperate zone can be divided into two large groups: univoltine and multivoltine cycles. In univoltine cycles, only one generation is annually realized. However, univoltinism of a particular species or population can be ensured by different mechanisms: its control can be endogenous (involving an obligate diapause) or exogenous (environmental, involving a facultative diapause). Furthermore, endogenously controlled univoltine seasonal cycles can include obligate embryonic (egg) diapause (e.g., Picromerus bidens and Apateticus cynicus), obligate nymphal diapause (e.g., Pentatoma rufipes) or obligate adult (reproductive) diapause (e.g., Palomena prasina, Palomena angulosa, and Menida scotti). Exogenously controlled seasonal cycles are more flexible. Many species that are multivoltine in the subtropical or warm temperate zones are univoltine further polewards. In this case, their univoltinism is controlled exogenously, or environmentally. The mechanism often involves such seasonal adaptations as photoperiodic response of facultative winter diapause induction with a high thermal optimum (e.g., Arma custos and Dybowskyia reticulata) or a high critical threshold of winter diapause induction response (e.g., Graphosoma lineatum). The seasonal cycles of some species include not only winter diapause (hibernation) but also summer diapause (aestivation). The diapausing stage can be the same (e.g., Nezara antennata has facultative adult winter and summer diapauses) or different (e.g., Picromerus bidens survives winter in obligate embryonic diapause and spends the hottest period of summer in facultative adult aestivation). All the multivoltine cycles follow the same general pattern, with one, two, or even more directly breeding generation(s) followed by a generation that enters winter diapause. However, this sequence may be complicated by incorporation of specific seasonal adaptations such as aestivation, migrations, different forms of seasonal polyphenism or polymorphism (e.g., seasonal changes of body color), etc. Many stink bugs demonstrate geographic clines of voltinism, producing several generations in the subtropical regions (environmentally controlled multivoltine development) and two or only one generation(s) polewards (environmentally controlled bi- or univoltinism). However, some species demonstrate a strictly bivoltine seasonal cycle: they always produce two annual generations, each with either winter or summer diapause. An example is Nezara antennata which produces two generations and enters facultative winter and summer diapauses. Semivoltine seasonal cycles last more than one year. They are not very rare among insects and are known in true bugs, but have not yet been recorded among pentatomids. Examples of different seasonal cycles are described and discussed in detail. Further discussion is focused on the ecological importance of photoperiodic and thermal responses in cases of natural or artificial dispersal of pentatomids beyond their original ranges. The phytophagous Nezara viridula and the predatory Podisus maculiventris and Perillus bioculatus are used as examples. An attempt is made to compare the phylogeny of Pentatomidae and distribution of realized patterns of their seasonal development. However, it is concluded that reconstruction of phylogenetic relationships cannot yet provide a sufficient basis for prediction of realized seasonal cycles. It is suggested that the terms uni-, bi-, multi-, and semivoltinism should refer to populations rather than species, since the realized patterns of seasonal development often differ between the northern and southern populations of the same broadly distributed species.  相似文献   

14.
Hymenopterans have become a model for the study of factors that govern sex allocation. In 1983, Seger proposed a model to study Sphecidae wasps with a strong prediction that sex ratio for univoltine wasps should be 1 : 1 (female : male), and for partially bivoltine species it should be male-biased. The present study investigates if Trypoxylon lactitarse (Saussure, 1867) is a univoltine or a bivoltine species and if Seger's model prediction fits the pattern of sex ratio found in this species. The study was carried out at Parque Municipal das Araucárias, in the municipality of Guarapuava, state of Paraná, southern Brazil, from December 2001 to December 2004. Nests of T. lactitarse were obtained using trap-nests drilled longitudinally to a depth to 80 mm with 7.0, 10.0 and 13.0 mm opening diameter. They were placed in a very heterogeneous site filled with araucaria forests, swamps and grasslands. Trypoxylon lactitarse showed two alternative life histories: either they pupated immediately and emerged as adults later in the same season (direct development), or they entered diapause, overwintering and pupating the following spring (delayed development). Its annual sex ratios were not significantly different from 1 : 1, and both sex ratio of overwintering and sex ratio of direct-developing wasps were also not significantly different from 1 : 1, in all years of this study. By examining these results, it was possible to conclude that although T. lactitarse is a multivoltine species, with four generations per year and two alternative life histories, its sex ratio did not support Seger's model.  相似文献   

15.
Abstract.  1. Molecular techniques have greatly added to the number of known sympatric cryptic species in insects. Ecological differences between these newly distinguished species are little explored, but niches often appear to overlap strongly. These cases are good models for exploring new ideas about species coexistence and community structure.
2.  Acanthoscelides obtectus and A. obvelatus are two sister species of bean bruchids, which have been confused until the last decade. One important ecological difference between them has emerged, however: A. obtectus is multivoltine and now distributed worldwide, whereas A. obvelatus is univoltine and restricted to Mesoamerica. Where their ranges overlap, the two species share the same host plants and larvae can sometimes complete development in the same seed.
3. The analysis of 27 622 Mexican individuals of the two species in 2001-2002 and 2002-2003 indicates that their niches overlap, but are differentiated with respect to altitude and the kind of beans (wild vs. domesticated). The principal patterns in their relative abundance in different habitats, and at different seasons, were constant from one year to the next.
4. As sympatry of these species seems to be of recent origin, the observed niche differentiation may not have evolved in response to competition, but could instead be the consequence of physiological differences, evolved independently in each species in allopatry, that pre-adapted them for different altitudes and kinds of resources.
5. The combination of biological and historical factors thus appears to allow these two sibling species to coexist in sympatry, despite their broadly overlapping ecological niches.  相似文献   

16.
Abstract.  Studies on the development and mortality of Paratanytarsus grimmii (Schneider) and Corynoneura scutellata (Winnertz), which can infest potable water distribution networks, were carried out at eight constant temperatures between 10 °C and 27 °C. Using weighted linear regression, the developmental thresholds were calculated as 7.9 and 8.7 °C for P. grimmii and C. scutellata , respectively. Corynoneura scutellata had a day-degree requirement of 172.4 per generation and developed significantly faster ( P  < 0.001) than P. grimmii with a day-degree requirement of 294.1. Both species were identified as multivoltine with a maximum theoretical number of five generations per year for P. grimmii and seven for C. scutellata . These results are discussed in the context of the management of chironomid infestations within water-treatment works.  相似文献   

17.
Summary The mechanisms and adaptations involved in the obligate third instar larval diapause of Colias alexandra, a native Rocky Mountain and intermountain region butterfly, are examined. Generally univoltine throughout its distribution, scattered, isolated bivoltine populations occur. Factors influencing continuous development were investigated under laboratory conditions on a single generation of offspring from a univoltine population each year from 1976–1979. If exposed to mean temperatures >24°C during the second instar, a significant number of larvae fail to diapause. These results are interpreted in the context of the actual environmental conditions experienced by the univoltine source population and a bivoltine population. A high degree of individual variability in response to continuous development conditions is shown. Variation in certainty of diapause, within an originally univoltine population, could be the evolutionary starting point for evolving a genuine multivoltine cueing system and provide the mechanism for ecological range expansion.  相似文献   

18.
Abstract Changes in the abundance and biomass of aquatic and terrestrial aerial insects with distance (mid‐stream, 0, 10–15 and 160 m) from lowland streams were examined across the dry season landscape in Kakadu National Park, northern Australia. Malaise traps and sticky intercept traps were used to sample the insects at four streams, spaced over an area of 1650 km2. Malaise and intercept catches were dominated by Diptera (flies and midges), both numerically and by biomass. Chironomid midges were the most abundant taxon, making up 43.4 and 51.0% of the malaise and intercept trap catches, respectively. However, most chironomids were small (less than 3 mm body length), contributing 34.9% to intercept trap biomass, but only 5.2% in malaise traps. Ceratopogonid midges and caddisflies (Trichoptera) accounted for most of the remaining adult aquatic insects. Major terrestrial components were Diptera and Hymenoptera in malaise traps and Coleoptera and Diptera in intercept traps. The total abundance and biomass of insects were much greater over streams and along the water's edge than in riparian (10–15 m) and savanna (160 m) habitats primarily because of the presence of large numbers of adult aquatic insects. The abundance and biomass of terrestrial insects in malaise traps showed no relationship with distance, but intercept trap catches suggested slightly greater abundances over the water and at the water's edge. The great abundance of aquatic insects relative to terrestrial insects close to streams suggests that they have the potential to be an important component of the diets of riparian insectivores, and predation may be an important pathway by which aquatic nutrients and energy are moved into terrestrial food webs.  相似文献   

19.
Successive generations of bi- and multivoltine species encounter differing biotic and abiotic environments intra-annually. The question of whether selection can independently adjust the relationship between body size and components of reproductive effort within successive generations in response to generation-specific environmental variation is applicable to a diversity of taxa. Herein, we develop a conceptual framework that illustrates increasingly independent life history adjustments between successive generations of taxa exhibiting complex life cycles. We apply this framework to the reproductive biology of the gall-forming insect, Belonocnema treatae (Hymenoptera: Cynipidae). This bivoltine species expresses cyclical parthenogenesis in which alternating sexual and asexual generations develop in different seasons and different environments. We tested the hypotheses that ecological divergence between the alternate generations is accompanied by generational differences in body size, egg size, and egg number and by changes in the relationships between body size and these components of reproductive effort. Increased potential reproductive effort of sexual generation B. treatae is attained by increased body size and egg number (with no trade-off between egg number and egg size) and by a significant increase in the slope of the relationship between body size and potential fecundity. These generation-specific relationships, interpreted in the context of the model framework, suggest that within each generation selection has independently molded the relationships relating body size to potential fecundity and potential reproductive effort in B. treatae. The conceptual framework is broadly applicable to comparisons involving the alternating generations of bi- and multivoltine species.  相似文献   

20.
Ashmore GM  Janzen FJ 《Oecologia》2003,134(2):182-188
Temperatures experienced during embryonic development elicit well-documented phenotypic variation in embryonic and neonatal animals. Most research, however, has only considered the effects of constant temperatures, even though developmental temperatures in natural settings fluctuate considerably on a daily and seasonal basis. A laboratory study of 15 clutches of smooth softshell turtles (Apalone mutica) was conducted to explicitly examine the influence of thermal variance on phenotypic variation. Holding mean temperature constant and eliminating substrate moisture effects permitted a clear assessment of the impact of thermal variance on hatching success, incubation length, hatchling body size, swimming speed, and righting time. Incubation length and swimming speed varied significantly among temperature treatments. Both traits tended to increase with increasing thermal variance during embryonic development. Clutch significantly affected all traits examined, except righting time, even after accounting for the effects of initial egg mass. These results highlight the importance of accounting for the impact of both thermal mean and variance on phenotypic variation. The findings also strengthen the increasing recognition of maternal clutch effects as critical factors influencing phenotypic variation in neonatal animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号