共查询到20条相似文献,搜索用时 0 毫秒
1.
In this and the following paper we have examined the kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents in order to interpret these currents in terms of the gating behavior of the mslo channel. To do so, however, it was necessary to first find conditions by which we could separate the effects that changes in Ca2+ concentration or membrane voltage have on channel permeation from the effects these stimuli have on channel gating. In this study we investigate three phenomena which are unrelated to gating but are manifest in macroscopic current records: a saturation of single channel current at high voltage, a rapid voltage-dependent Ca2+ block, and a slow voltage-dependent Ba2+ block. Where possible methods are described by which these phenomena can be separated from the effects that changes in Ca2+ concentration and membrane voltage have on channel gating. Where this is not possible, some assessment of the impact these effects have on gating parameters determined from macroscopic current measurements is provided. We have also found that without considering the effects of Ca2+ and voltage on channel permeation and block, macroscopic current measurements suggest that mslo channels do not reach the same maximum open probability at all Ca2+ concentrations. Taking into account permeation and blocking effects, however, we find that this is not the case. The maximum open probability of the mslo channel is the same or very similar over a Ca2+ concentration range spanning three orders of magnitude indicating that over this range the internal Ca2+ concentration does not limit the ability of the channel to be activated by voltage. 相似文献
2.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels
had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+
o
//155 mm K+
i
) and 231 ± 4 pS in external high-K
o
solution (155 mm K+
o
//155 mm K+
i
). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3
m internal Ca2+, respectively. Using an internal solution containing 10−4
m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with
a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones.
Received: 7 November 1996/Revised: 29 October 1997 相似文献
3.
Zhao-Wen Wang Masayuki Nara Yong-Xiao Wang Michael I. Kotlikoff 《The Journal of general physiology》1997,110(1):35-44
The effects of sulfhydryl reduction/oxidation on the gating of large-conductance, Ca2+-activated K+ (maxi-K) channels were examined in excised patches from tracheal myocytes. Channel activity was modified by sulfhydryl redox agents applied to the cytosolic surface, but not the extracellular surface, of membrane patches. Sulfhydryl reducing agents dithiothreitol, β-mercaptoethanol, and GSH augmented, whereas sulfhydryl oxidizing agents diamide, thimerosal, and 2,2′-dithiodipyridine inhibited, channel activity in a concentration-dependent manner. Channel stimulation by reduction and inhibition by oxidation persisted following washout of the compounds, but the effects of reduction were reversed by subsequent oxidation, and vice versa. The thiol-specific reagents N-ethylmaleimide and (2-aminoethyl)methanethiosulfonate inhibited channel activity and prevented the effect of subsequent sulfhydryl oxidation. Measurements of macroscopic currents in inside-out patches indicate that reduction only shifted the voltage/nPo relationship without an effect on the maximum conductance of the patch, suggesting that the increase in nPo following reduction did not result from recruitment of more functional channels but rather from changes of channel gating. We conclude that redox modulation of cysteine thiol groups, which probably involves thiol/disulfide exchange, alters maxi-K channel gating, and that this modulation likely affects channel activity under physiological conditions. 相似文献
4.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step. 相似文献
5.
Izumi Sugihara 《The Journal of general physiology》1998,111(2):363-379
Effects of internal Sr2+ on the activity of large-conductance Ca2+-activated K+ channels were studied in inside-out membrane patches from goldfish saccular hair cells. Sr2+ was approximately one-fourth as potent as Ca2+ in activating these channels. Although the Hill coefficient for Sr2+ was smaller than that for Ca2+, maximum open-state probability, voltage dependence, steady state gating kinetics, and time courses of activation and deactivation of the channel were very similar under the presence of equipotent concentrations of Ca2+ and Sr2+. This suggests that voltage-dependent activation is partially independent of the ligand. Internal Sr2+ at higher concentrations (>100 μM) produced fast and slow blockade both concentration and voltage dependently. The reduction in single-channel amplitude (fast blockade) could be fitted with a modified Woodhull equation that incorporated the Hill coefficient. The dissociation constant at 0 mV, the Hill coefficient, and zd (a product of the charge of the blocking ion and the fraction of the voltage difference at the binding site from the inside) in this equation were 58–209 mM, 0.69–0.75, 0.45–0.51, respectively (n = 4). Long shut events (slow blockade) produced by Sr2+ lasted ∼10–200 ms and could be fitted with single-exponential curves (time constant, τl−s) in shut-time histograms. Durations of burst events, periods intercalated by long shut events, could also be fitted with single exponentials (time constant, τb). A significant decrease in τb and no large changes in τl−s were observed with increased Sr2+ concentration and voltage. These findings on slow blockade could be approximated by a model in which single Sr2+ ions bind to a blocking site within the channel pore beyond the energy barrier from the inside, as proposed for Ba2+ blockade. The dissociation constant at 0 mV and zd in the Woodhull equation for this model were 36–150 mM and 1–1.8, respectively (n = 3). 相似文献
6.
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures.
In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V
1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK
Ca
) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V
1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P
o
) of BK
Ca
channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P
o
of BK
Ca
channels in cell-attached patches within minutes. These data suggest that the activation of BK
Ca
channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton.
Received 18 June 1999/Revised: 18 January 2000 相似文献
7.
Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. 相似文献
8.
9.
Kiril L. Hristov Serge A. Y. Afeli Shankar P. Parajuli Qiuping Cheng Eric S. Rovner Georgi V. Petkov 《PloS one》2013,8(7)
Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson’s disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO), which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM) large conductance Ca2+-activated K+ (BK) channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR), perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs) in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects. 相似文献
10.
Peter S. Pennefather Wei Zhou Thomas E. DeCoursey 《The Journal of general physiology》1998,111(6):795-805
A simple kinetic model is presented to explain the gating of a HERG-like voltage-gated K+ conductance described in the accompanying paper (Zhou, W., F.S. Cayabyab, P.S. Pennefather, L.C. Schlichter, and T.E. DeCoursey. 1998. J. Gen. Physiol. 111:781–794). The model proposes two kinetically distinct closing pathways, a rapid one favored by depolarization (deactivation) and a slow one favored by hyperpolarization (inactivation). The overlap of these two processes leads to a window current between −50 and +20 mV with a peak at −36 mV of ∼12% maximal conductance. The near absence of depolarization-activated outward current in microglia, compared with HERG channels expressed in oocytes or cardiac myocytes, can be explained if activation is shifted negatively in microglia. As seen with experimental data, availability predicted by the model was more steeply voltage dependent, and the midpoint more positive when determined by making the holding potential progressively more positive at intervals of 20 s (starting at −120 mV), rather than progressively more negative (starting at 40 mV). In the model, this hysteresis was generated by postulating slow and ultra-slow components of inactivation. The ultra-slow component takes minutes to equilibrate at −40 mV but is steeply voltage dependent, leading to protocol-dependent modulation of the HERG-like current. The data suggest that “deactivation” and “inactivation” are coupled through the open state. This is particularly evident in isotonic Cs+, where a delayed and transient outward current develops on depolarization with a decay time constant more voltage dependent and slower than the deactivation process observed at the same potential after a brief hyperpolarization. 相似文献
11.
Large-conductance Ca-activated potassium channels (BK channels) are uniquely sensitive to both membrane potential and intracellular Ca2+. Recent work has demonstrated that in the gating of these channels there are voltage-sensitive steps that are separate from Ca2+ binding steps. Based on this result and the macroscopic steady state and kinetic properties of the cloned BK channel mslo, we have recently proposed a general kinetic scheme to describe the interaction between voltage and Ca2+ in the gating of the mslo channel (Cui, J., D.H. Cox, and R.W. Aldrich. 1997. J. Gen. Physiol. In press.). This scheme supposes that the channel exists in two main conformations, closed and open. The conformational change between closed and open is voltage dependent. Ca2+ binds to both the closed and open conformations, but on average binds more tightly to the open conformation and thereby promotes channel opening. Here we describe the basic properties of models of this form and test their ability to mimic mslo macroscopic steady state and kinetic behavior. The simplest form of this scheme corresponds to a voltage-dependent version of the Monod-Wyman-Changeux (MWC) model of allosteric proteins. The success of voltage-dependent MWC models in describing many aspects of mslo gating suggests that these channels may share a common molecular mechanism with other allosteric proteins whose behaviors have been modeled using the MWC formalism. We also demonstrate how this scheme can arise as a simplification of a more complex scheme that is based on the premise that the channel is a homotetramer with a single Ca2+ binding site and a single voltage sensor in each subunit. Aspects of the mslo data not well fitted by the simplified scheme will likely be better accounted for by this more general scheme. The kinetic schemes discussed in this paper may be useful in interpreting the effects of BK channel modifications or mutations. 相似文献
12.
Thandavarayan Kathiresan Margaret Harvey Sandra Orchard Yoshihisa Sakai Bernd Sokolowski 《Molecular & cellular proteomics : MCP》2009,8(8):1972-1987
The large conductance Ca2+-activated K+ or BK channel has a role in sensory/neuronal excitation, intracellular signaling, and metabolism. In the non-mammalian cochlea, the onset of BK during development correlates with increased hearing sensitivity and underlies frequency tuning in non-mammals, whereas its role is less clear in mammalian hearing. To gain insights into BK function in mammals, coimmunoprecipitation and two-dimensional PAGE, combined with mass spectrometry, were used to reveal 174 putative BKAPs from cytoplasmic and membrane/cytoskeletal fractions of mouse cochlea. Eleven BKAPs were verified using reciprocal coimmunoprecipitation, including annexin, apolipoprotein, calmodulin, hippocalcin, and myelin P0, among others. These proteins were immunocolocalized with BK in sensory and neuronal cells. A bioinformatics approach was used to mine databases to reveal binary partners and the resultant protein network, as well as to determine previous ion channel affiliations, subcellular localization, and cellular processes. The search for binary partners using the IntAct molecular interaction database produced a putative global network of 160 nodes connected with 188 edges that contained 12 major hubs. Additional mining of databases revealed that more than 50% of primary BKAPs had prior affiliations with K+ and Ca2+ channels. Although a majority of BKAPs are found in either the cytoplasm or membrane and contribute to cellular processes that primarily involve metabolism (30.5%) and trafficking/scaffolding (23.6%), at least 20% are mitochondrial-related. Among the BKAPs are chaperonins such as calreticulin, GRP78, and HSP60 that, when reduced with siRNAs, alter BKα expression in CHO cells. Studies of BKα in mitochondria revealed compartmentalization in sensory cells, whereas heterologous expression of a BK-DEC splice variant cloned from cochlea revealed a BK mitochondrial candidate. The studies described herein provide insights into BK-related functions that include not only cell excitation, but also cell signaling and apoptosis, and involve proteins concerned with Ca2+ regulation, structure, and hearing loss.BK1 channels act as sensors for membrane voltage and intracellular Ca2+, thereby linking cell excitability, metabolism, and signaling. BK channels, also known as Slo, are large conductance channels (100–300 pS) (1) composed of four α-subunits that are regulated by four auxiliary β-subunits. The α-subunit of the BK channel has six to seven transmembrane-spanning regions (S0–S6) where the S0 domain places the N terminus extracellularly as a binding site for the beta subunit. The transmembrane domains S1-S4 are responsible for sensing voltage changes, whereas the pore forming region, between S5–S6, conducts ions. BK has a large C-terminal region that contains target sequences for channel modulation such as a Ca2+ bowl, two domains that regulate the conductance of K+ (RCK1 and RCK2), a tetramerization domain, leucine zipper motifs, a heme-binding motif, two phosphorylation sites, and a caveolin-targeting domain (2, see Ref. 3 for review). The leucine zipper motifs, contained in the C terminus, are essential for protein-protein interactions and modulating channel activity and expression.Four genes, designated as Kcnma, encode the α-subunits of the different Slo channels. These include Kcnma1 (Slo1), two similar paralogs, Kcnma2 (Slo2.1 and Slo2.2), and Kcnma3 (Slo3). The α-subunits form homotetramers that are K+-selective, but differ in their gating properties (2). All α-subunits have S1–S6 transmembrane domains, whereas only Slo1 and Slo3 have an additional S0 domain and a Ca2+ bowl that is composed of a majority of either positively (Slo1) or negatively charged (Slo3) amino acids.BK channels are important to sensory or hair cell “tuning” in lower vertebrates. This function is reflected by the variations in channel kinetics found along the tonotopic gradient of the turtle cochlea, thereby contributing to differences in electrical resonance or tuning. In these vertebrates, BK is colocalized with L-type Ca2+ channels in presynaptic active zones (3) and is thus coupled to neurotransmitter release as described for the nerve muscle synapse (4, 5). Although the onset of this channel during cochlear development in both mammals and non-mammals coincides with an increase in hearing sensitivity (6, 7), its function is less clear in the former where hair cells are not frequency-tuned and studies report either the presence or the absence of hearing with the loss of BK (8, 9). The BK channel has been localized to both the outer hair cells (OHC) (10) and inner hair cells (IHC) (7, 11–13) in mammals. However, unlike non-mammals, the BK channel appears in both synaptic and extrasynaptic sites near the apical end or neck of the IHC (9).More than 100,000 expressed sequence tags have been identified in the vertebrate cochlea (14), thus, the use of yeast two-hybrid screening to determine BKAPs is a difficult task. However, recent developments in proteomics in combination with immunoprecipitation and LC-MS/MS analysis, allow for the efficient identification of interacting partners. Thus far, more than forty different expressed sequence tags have been identified in other tissues; most of these proteins interact with the C terminus of the channel to modulate expression as well as function (15).In the present study, we determined putative BKAPs in mouse cochlea by coIP and mass spectrometry followed by further validation using reciprocal coIP, colocalization, and siRNA. We identified 174 BKAPs in 30-day-old mouse cochlea, which were further analyzed using bioinformatics. A BK interactome revealed several insights into BK function and common cellular pathways and processes. This approach identified novel BKα complexes with important roles in development, calcium binding, and chaperone activity as well as hearing loss. 相似文献
13.
Potassium channels allow the selective flux of K+ excluding the smaller, and more abundant in the extracellular solution, Na+ ions. Here we show that Shab is a typical K+ channel that excludes Na+ under bi-ionic, Nao/Ki or Nao/Rbi, conditions. However, when internal K+ is replaced by Cs+ (Nao/Csi), stable inward Na+ and outward Cs+ currents are observed. These currents show that Shab selectivity is not accounted for by protein structural elements alone, as implicit in the snug-fit model of selectivity. Additionally, here we report the block of Shab channels by external Ca2+ ions, and compare the effect that internal K+ replacement exerts on both Ca2+ and TEA block. Our observations indicate that Ca2+ blocks the channels at a site located near the external TEA binding site, and that this pore region changes conformation under conditions that allow Na+ permeation. In contrast, the latter ion conditions do not significantly affect the binding of quinidine to the pore central cavity. Based on our observations and the structural information derived from the NaK bacterial channel, we hypothesize that Ca2+ is probably coordinated by main chain carbonyls of the pore´s first K+-binding site. 相似文献
14.
短暂脑缺血可对随后的损伤性脑缺血表现出明显的耐受.有研究表明大电导Ca2+依赖K+(BKCa)通道活动增强参与了缺血性脑损伤.采用膜片钳的内面向外式,观察了3 min短暂脑缺血后6 h、24 h以及48 h大鼠海马CA1区锥体细胞上BKCa通道活动的动态变化.短暂脑缺血后BKCa通道的单通道电导和翻转电位均未见明显变化,但通道的开放概率则在缺血预处理后的前24 h内显著降低.通道动力学分析显示通道关闭时间变长是短暂脑缺血后通道活动降低的主要原因,因为通道的开放时间未发生明显变化.结果提示短暂脑缺血所致的BKCa通道活动降低可能与缺血耐受的产生有关. 相似文献
15.
Selectivity of the Ca2+-activated and Light-dependent K+ Channels for Monovalent Cations 总被引:3,自引:0,他引:3 下载免费PDF全文
The ionic selectivity of the Ca2+-activated K+ channel of Aplysia neurons and of the light-dependent K+ channel of Pecten photoreceptors to metal and organic cations was studied. The selectivity sequence determined from reversal potential measurements is T1+ K+ > Rb+ > NH+4 > Cs+ > Na+, Li+ and is identical to the sequence determined previously for voltage-dependent K+ channels in a variety of tissues. Our results suggest that some physical aspect of the K+ channel is conserved in phyllogenetically different tissues and cells. 相似文献
16.
Yoshiaki Suzuki Hisao Yamamura Susumu Ohya Yuji Imaizumi 《The Journal of biological chemistry》2013,288(51):36750-36761
L-type voltage-dependent Ca2+ channels (LVDCC) and large conductance Ca2+-activated K+ channels (BKCa) are the major factors defining membrane excitability in vascular smooth muscle cells (VSMCs). The Ca2+ release from sarcoplasmic reticulum through ryanodine receptor significantly contributes to BKCa activation in VSMCs. In this study direct coupling between LVDCC (Cav1.2) and BKCa and the role of caveoline-1 on their interaction in mouse mesenteric artery SMCs were examined. The direct activation of BKCa by Ca2+ influx through coupling LVDCC was demonstrated by patch clamp recordings in freshly isolated VSMCs. Using total internal reflection fluorescence microscopy, it was found that a large part of yellow fluorescent protein-tagged BKCa co-localized with the cyan fluorescent protein-tagged Cav1.2 expressed in the plasma membrane of primary cultured mouse VSMCs and that the two molecules often exhibited FRET. It is notable that each BKα subunit of a tetramer in BKCa can directly interact with Cav1.2 and promotes Cav1.2 cluster in the molecular complex. Furthermore, caveolin-1 deficiency in knock-out (KO) mice significantly reduced not only the direct coupling between BKCa and Cav1.2 but also the functional coupling between BKCa and ryanodine receptor in VSMCs. The measurement of single cell shortening by 40 mm K+ revealed enhanced contractility in VSMCs from KO mice than wild type. Taken together, caveolin-1 facilitates the accumulation/clustering of BKCa-LVDCC complex in caveolae, which effectively regulates spatiotemporal Ca2+ dynamics including the negative feedback, to control the arterial excitability and contractility. 相似文献
17.
J.-P. Bénitah J.R. Balser E. Marban G.F. Tomaselli 《The Journal of membrane biology》1997,155(2):121-131
Extracellular acidosis affects both permeation and gating of the expressed rat skeletal muscle Na+ channel (μ1). Reduction of the extracellular pH produced a progressive decrease in the maximal whole-cell conductance and
a depolarizing shift in the whole-cell current-voltage relationship. A smaller depolarizing shift in the steady-state inactivation
curve was observed. The pK of the reduction of maximal conductance was 6.1 over the pH range studied. An upper limit estimate
of the pK of the shift of the half-activation voltage was 6.1. The relative reduction in the maximal whole-cell conductance
did not change with higher [Na+]
o
. The conductance of single fenvalerate-modified Na+ channels was reduced by extracellular protons. Although the single-channel conductance increased with higher [Na+]
o
, the maximal conductances at pH 7.6, 7.0 and 6.0 did not converge at [Na+]
o
up to 280 mm, inconsistent with a simple electrostatic effect. A model incorporating both Na+ and H+ binding in the pore and cation binding to a Gouy-Chapman surface charge provided a robust fit to the single-channel conductance
data with an estimated surface charge density of 1e−/439?2. Neither surface charge nor proton block alone suffices to explain the effects of extracellular acidosis on Na+ channel permeation; both effects play major roles in mediating the response to extracellular pH.
Received: 14 May 1996/Revised: 19 September 1996 相似文献
18.
Michel J. Roux Riccardo Olcese Ligia Toro Francisco Bezanilla Enrico Stefani 《The Journal of general physiology》1998,111(5):625-638
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region. 相似文献
19.
High-conductance, Ca2+-activated K+ channels from the basolateral membrane of rabbit distal colon epithelial cells were reconstituted into planar phospholipid
bilayers to examine the effect of Mg2+ on the single-channel properties. Mg2+ decreases channel current and conductance in a concentration-dependent manner from both the cytoplasmic and the extracellular
side of the channel. In contrast to other K+ channels, Mg2+ does not cause rectification of current through colonic Ca2+-activated K+ channels. In addition, cytoplasmic Mg2+ decreases the reversal potential of the channel. The Mg2+-induced decrease in channel conductance is relieved by high K+ concentrations, indicating competitive interaction between K+ and Mg2+. The monovalent organic cation choline also decreases channel conductance and reversal potential, suggesting that the effect
is unspecific. The inhibition of channel current by Mg2+ and choline most likely is a result of electrostatic screening of negative charges located superficially in the channel entrance.
But in addition to charge, other properties appear to be necessary for channel inhibition, as Na+ and Ba2+ are no (or only weak) inhibitors. Mg2+ and possibly other cations may play a role in the regulation of current through these channels.
Received: 25 August 1995/Revised: 16 November 1995 相似文献
20.
Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells 总被引:9,自引:0,他引:9
Fast inhibitory synaptic transmission in the central nervous system is mediated by ionotropic GABA or glycine receptors. Auditory outer hair cells present a unique inhibitory synapse that uses a Ca2+-permeable excitatory acetylcholine receptor to activate a hyperpolarizing potassium current mediated by small conductance calcium-activated potassium (SK) channels. It is shown here that unitary inhibitory postsynaptic currents at this synapse are mediated by SK2 channels and occur rapidly, with rise and decay time constants of approximately 6 ms and approximately 30 ms, respectively. This time course is determined by the Ca2+ gating of SK channels rather than by the changes in intracellular Ca2+. The results demonstrate fast coupling between an excitatory ionotropic neurotransmitter receptor and an inhibitory ion channel and imply rapid, localized changes in subsynaptic calcium levels. 相似文献