首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disruption or absence of hepatocyte keratins 8 and 18 is associated with chronic hepatitis, marked hepatocyte fragility, and a significant predisposition to stress-induced liver injury. In contrast, pancreatic keratin disruption in transgenic mice that express keratin 18 Arg89 --> Cys (K18C) is not associated with an obvious pancreatic pathology. We compared the effects of keratin filament disruption on pancreatic acini or acinar cell viability, and on cholecystokinin (CCK)-stimulated secretion, in transgenic mice that overexpress wild-type keratin 18 and harbor normal extended keratin filaments (TG2) and K18C mice. We also compared the response of these mice to pancreatitis induced by a choline-deficient ethionine-supplemented diet or by caerulein. Despite extensive cytoplasmic keratin filament disruption, the apicolateral keratin filament bundles appear intact in the acinar pancreas of K18C mice, as determined ultrastructurally and by light microscopy. No significant pancreatitis-associated histologic, serologic, or F-actin/keratin apicolateral redistribution differences were noted between TG2 and K18C mice. Acinar cell viability and yield after collagenase digestion were lower in K18C than in TG2 mice, but the yields of intact acini and their (125)I-CCK uptake and responses to CCK-stimulated secretion were similar. Our results indicate that keratin filament reorganization is a normal physiologic response to pancreatic cell injury, but an intact keratin cytoplasmic filament network is not as essential in protection from cell injury as in the liver. These findings raise the possibility that the abundant apicolateral acinar keratin filaments, which are not as evident in hepatocytes, may play the cytoprotective role that is seen in liver and other tissues. Alternatively, identical keratins may function differently in different tissues.  相似文献   

2.
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.  相似文献   

3.
《The Journal of cell biology》1995,131(5):1291-1301
Phosphorylation of keratin polypeptides 8 and 18 (K8/18) and other intermediate filament proteins results in their reorganization in vitro and in vivo. In order to study functional aspects of human K18 phosphorylation, we generated and purified a polyclonal antibody (termed 3055) that specifically recognizes a major phosphorylation site (ser52) of human K18 but not dephosphorylated K18 or a ser52-->ala K18 mutant. Pulse-chase experiments followed by immunoprecipitation and peptide mapping of in vivo 32PO4-labeled K8/18 indicated that the overall phosphorylation turnover rate is faster for K18 versus K8, and that ser52 of K18 is a highly dynamic phosphorylation site. Isoelectric focusing of 32PO4 labeled K18 followed by immunoblotting with 3055 showed that the major phosphorylated K18 species contain ser52 phosphorylation but that some K18 molecules exist that are preferentially phosphorylated on K18 sites other than ser52. Immunoblotting of total cell lysates obtained from cells at different stages of the cell cycle showed that ser52 phosphorylation increases three to fourfold during the S and G2/M phases of the cell cycle. Immunofluorescence staining of cells at different stages of mitosis, using 3055 or other antibodies that recognize the total keratin pool, resulted in preferential binding of the 3055 antibody to the reorganized keratin fraction. Staining of human tissues or tissues from transgenic mice that express human K18 showed that the phospho-ser52 K18 species are located preferentially in the basolateral and apical domains in the liver and pancreas, respectively, but no preferential localization was noted in other simple epithelial organs examined. Our results support a model whereby phosphorylated intermediate filaments are localized in specific cellular domains depending on the tissue type and site(s) of phosphorylation. In addition, ser52 of human K18 is a highly dynamic phosphorylation site that undergoes modulation during the S and G2/M phases of the cell cycle in association with filament reorganization.  相似文献   

4.
Keratin polypeptides 8 and 18 (K8/18) are intermediate filament (IF) proteins that are expressed in glandular epithelia. Although the mechanism of keratin turnover is poorly understood, caspase-mediated degradation of type I keratins occurs during apoptosis and the proteasome pathway has been indirectly implicated in keratin turnover based on colocalization of keratin-ubiquitin antibody staining. Here we show that K8 and K18 are ubiquitinated based on cotransfection of His-tagged ubiquitin and human K8 and/or K18 cDNAs, followed by purification of ubiquitinated proteins and immunoblotting with keratin antibodies. Transfection of K8 or K18 alone yields higher levels of keratin ubiquitination as compared with cotransfection of K8/18, likely due to stabilization of the keratin heteropolymer. Most of the ubiquitinated species partition with the noncytosolic keratin fraction. Proteasome inhibition stabilizes K8 and K18 turnover, and is associated with accumulation of phosphorylated keratins, which indicates that although keratins are stable they still turnover. Analysis of K8 and K18 ubiquitination and degradation showed that K8 phosphorylation contributes to its stabilization. Our results provide direct evidence for K8 and K18 ubiquitination, in a phosphorylation modulated fashion, as a mechanism for regulating their turnover and suggest that other IF proteins could undergo similar regulation. These and other data offer a model that links keratin ubiquitination and hyperphosphorylation that, in turn, are associated with Mallory body deposits in a variety of liver diseases.  相似文献   

5.
There is ample in vitro evidence that phosphorylation of intermediate filaments, including keratins, plays an important role in filament reorganization. In order to gain a better understanding of the function of intermediate filament phosphorylation, we sought to identify the major phosphorylation site of human keratin polypeptide 18 (K18) and study its role in filament assembly or reorganization. We generated a series of K18 ser-->ala mutations at potential phosphorylation sites, followed by expression in insect cells and comparison of the tryptic 32PO4-labeled patterns of the generated constructs. Using this approach, coupled with Edman degradation of the 32PO4-labeled tryptic peptides, and comparison with tryptic peptides analyzed after labeling normal human colonic tissues, we identified ser-52 as the major K18 physiologic phosphorylation site. Ser-52 in K18 is not glycosylated and matches consensus sequences for phosphorylation by CAM kinase, S6 kinase and protein kinase C, and all these kinases can phosphorylate K18 in vitro predominantly at that site. Expression of K18 ser-52-->ala mutant in mammalian cells showed minimal phosphorylation but no distinguishable difference in filament assembly when compared with wild- type K18. In contrast, the ser-52 mutation played a clear but nonexclusive role in filament reorganization, based on analysis of filament alterations in cells treated with okadaic acid or arrested at the G2/M stage of the cell cycle. Our results show that ser-52 is the major physiologic phosphorylation site of human K18 in interphase cells, and that its phosphorylation may play an in vivo role in filament reorganization.  相似文献   

6.
Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.  相似文献   

7.
Keratins 8 and 18 belong to the keratin family of intermediate filament (IF) proteins and constitute a hallmark for all simple epithelia, including the liver. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18). In these cells, the loss of one partner via a targeted null mutation in the germline results in hepatocytes lacking K8/K18 IFs, thus providing a model of choice for examining the function(s) of simple epithelium keratins. Here, we report that K8-null mouse hepatocytes in primary culture and in vivo are three- to fourfold more sensitive than wild-type (WT) mouse hepatocytes to Fas-mediated apoptosis after stimulation with Jo2, an agonistic antibody of Fas ligand. This increased sensitivity is associated with a higher and more rapid caspase-3 activation and DNA fragmentation. In contrast, no difference in apoptosis is observed between cultured K8-null and WT hepatocytes after addition of the Fas-related death-factors tumor necrosis factor (TNF) alpha or TNF-related apoptosis-inducing ligand. Analyses of the Fas distribution in K8-null and WT hepatocytes in culture and in situ demonstrate a more prominent targeting of the receptor to the surface membrane of K8-null hepatocytes. Moreover, altering Fas trafficking by disrupting microtubules with colchicine reduces by twofold the protection generated against Jo2-induced lethal action in K8-null versus WT hepatocytes. Together, the results strongly suggest that simple epithelium K8/K18 provide resistance to Fas-mediated apoptosis and that this protection occurs through a modulation of Fas targeting to the cell surface.  相似文献   

8.
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.  相似文献   

9.
10.
Keratins 8 and 18 (K8/18) are major constituents of Mallory bodies (MBs), which are hepatocyte cytoplasmic inclusions seen in several liver diseases. K18-null but not K8-null or heterozygous mice form MBs, which indicates that K8 is important for MB formation. Early stages in MB genesis include K8/18 hyperphosphorylation and overexpression. We used transgenic mice that overexpress K8, K18, or K8/18 to test the importance of K8 and/or K18 in MB formation. MBs were induced by feeding 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Livers of young K8 or K8/K18 overexpressors had no histological abnormalities despite increased keratin protein and phosphorylation. In aging mice, only K8-overexpressing livers spontaneously developed small "pre-MB" aggregates. Only K8-overexpressing young mice are highly susceptible to MB formation after short-term DDC feeding. Thus, the K8 to K18 ratio, rather than K8/18 overexpression by itself, plays an essential role in MB formation. K8 overexpression is sufficient to form pre-MB and primes animals to accumulate MBs upon DDC challenge, which may help explain MB formation in human liver diseases.  相似文献   

11.
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.  相似文献   

12.
Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.  相似文献   

13.
N O Ku  J Liao    M B Omary 《The EMBO journal》1998,17(7):1892-1906
Members of the 14-3-3 protein family bind the human intermediate filament protein keratin 18 (K18) in vivo, in a cell-cycle- and phosphorylation-dependent manner. We identified K18 Ser33 as an interphase phosphorylation site, which increases its phosphorylation during mitosis in cultured cells and regenerating liver, and as an in vitro cdc2 kinase phosphorylation site. Comparison of wild-type versus K18 Ser33-->Ala/Asp transfected cells showed that K18 Ser33 phosphorylation is essential for the association of K18 with 14-3-3 proteins, and plays a role in keratin organization and distribution. Mutation of another K18 major phosphorylation site (Ser52) or K18 glycosylation sites had no effect on the binding of K18 to 14-3-3 proteins. The K18 phospho-Ser33 motif is different from several 14-3-3-binding phosphomotifs already described. Antibodies that are specific to K18 phospho-Ser33 or phospho-Ser52 show that although Ser52 and Ser33 phosphorylated K18 molecules manifest partial colocalization, these phosphorylation events reside predominantly on distinct K18 molecules. Our results demonstrate a unique K18 phosphorylation site that is necessary but not sufficient for K18 binding to 14-3-3 proteins. This binding is likely to involve one or more mitotic events coupled to K18 Ser33 phosphorylation, and plays a role in keratin subcellular distribution. Physiological Ser52 or Ser33 phosphorylation on distinct K18 molecules suggests functional compartmentalization of these modifications.  相似文献   

14.
Post-translational modifications are important functional determinants for intermediate filament (IF) proteins. Phosphorylation of IF proteins regulates filament organization, solubility, and cell-protective functions. Most known IF protein phosphorylation sites are serines localized in the variable “head” and “tail” domain regions. By contrast, little is known about site-specific tyrosine phosphorylation or its implications on IF protein function. We used available proteomic data from large scale studies to narrow down potential phospho-tyrosine sites on the simple epithelial IF protein keratin 8 (K8). Validation of the predicted sites using a pan-phosphotyrosine and a site-specific antibody, which we generated, revealed that the highly conserved Tyr-267 in the K8 “rod” domain was basally phosphorylated. The charge at this site was critically important, as demonstrated by altered filament organization of site-directed mutants, Y267F and Y267D, the latter exhibiting significantly diminished solubility. Pharmacological inhibition of the protein-tyrosine phosphatase PTP1B increased K8 Tyr-267 phosphorylation, decreased solubility, and increased K8 filament bundling, whereas PTP1B overexpression had the opposite effects. Furthermore, there was significant co-localization between K8 and a “substrate-trapping” mutant of PTP1B (D181A). Because K8 Tyr-267 is conserved in many IFs (QYE motif), we tested the effect of the paralogous Tyr in glial fibrillary acidic protein (GFAP), which is mutated in Alexander disease (Y242D). Similar to K8, Y242D GFAP exhibited highly irregular filament organization and diminished solubility. Our results implicate the rod domain QYE motif tyrosine as an important determinant of IF assembly and solubility properties that can be dynamically modulated by phosphorylation.  相似文献   

15.
Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.  相似文献   

16.
Keratins modulate hepatic cell adhesion, size and G1/S transition   总被引:2,自引:0,他引:2  
Keratins (Ks) are the intermediate filament (IF) proteins of epithelial cells. Hepatocyte IFs are made solely of keratins 8 and 18 (K8/K18), the hallmark of all simple epithelia. While K8/K18 are essential for maintaining structural integrity, there is accumulating evidence indicating that they also exert non-mechanical functions. We have reported recently that K8/K18-free hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis, in line with an increased Fas density at the cell surface and an altered c-Flip regulation of the anti-apoptotic ERK1/2 signaling pathway. In the present study, we show that K8-null hepatocytes attach more rapidly but spread more slowly on a fibronectin substratum and undergo a more efficient G1/S transition than wild-type hepatocytes. Moreover, plectin, an IF associated protein, receptor for activated C kinase 1 (RACK1), a plectin partner, and vinculin, a key component of focal adhesions, distribute differently in spreading K8-null hepatocytes. Cell seeding leads to no differential activation of ERK1/2 in WT versus K8-null hepatocytes, whereas a stronger Akt activation is detected in K8-null hepatocytes. Insulin stimulation also leads to a differential Akt activation, implying altered Akt signaling capacity as a result of the K8/K18 loss. In addition, a delayed autophosphorylation of FAK, a target for integrin beta1 signaling, was obtained in seeding K8-null hepatocytes. These alterations in cell cycle-related events in hepatocytes in primary culture are also found in a K8-knockdown H4-II-E-C3 rat hepatoma cell line. Besides, K8/K18-free cells are smaller and exhibit a reduced rate of protein synthesis. In addition, a distinctive cyclin interplay is observed in these K8/K18-free hepatic cells, namely a more efficient cyclin A-dependent G1/S phase transition. Furthermore, K8 re-expression in these cells, following transfer of a human K8 cDNA, restores proper cell size, spreading and growth. Together, these results suggest new interrelated signaling roles of K8/18 with plectin/RACK1 in the modulation of cell attachment/spreading, size/protein synthesis and G1/S transition.  相似文献   

17.
《The Journal of cell biology》1995,131(5):1303-1314
The two major intermediate filament proteins in glandular epithelia are keratin polypeptides 8 and 18 (K8/18). To evaluate the function and potential disease association of K18, we examined the effects of mutating a highly conserved arginine (arg89) of K18. Expression of K18 arg89-->his/cys and its normal K8 partner in cultured cells resulted in punctate staining as compared with the typical filaments obtained after expression of wild-type K8/18. Generation of transgenic mice expressing human K18 arg89-->cys resulted in marked disruption of liver and pancreas keratin filament networks. The most prominent histologic abnormalities were liver inflammation and necrosis that appeared at a young age in association with hepatocyte fragility and serum transaminase elevation. These effects were caused by the mutation since transgenic mice expressing wild-type human K18 showed a normal phenotype. A relative increase in the phosphorylation and glycosylation of detergent solubilized K8/18 was also noted in vitro and in transgenic animals that express mutant K18. Our results indicate that the highly conserved arg plays an important role in glandular keratin organization and tissue fragility as already described for epidermal keratins. Phosphorylation and glycosylation alterations in the arg mutant keratins may account for some of the potential changes in the cellular function of these proteins. Mice expressing mutant K18 provide a novel animal model for human chronic hepatitis, and for studying the tissue specific function(s) of K8/18.  相似文献   

18.
FasR stimulation by Fas ligand leads to rapid formation of FasR microaggregates, which become signaling protein oligomerization transduction structures (SPOTS), through interactions with actin and ezrin, a structural step that triggers death-inducing signaling complex formation, in association with procaspase-8 activation. In some cells, designated as type I, caspase 8 directly activates effector caspases, whereas in others, known as type II, the caspase-mediated death signaling is amplified through mitochondria. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatocyte IFs are made solely of keratins 8/18 (K8/K18), the hallmark of all simple epithelia. We have shown recently that in comparison to type II wild-type (WT) mouse hepatocytes, the absence of K8/K18 IFs in K8-null hepatocytes leads to more efficient FasR-mediated apoptosis, in link with a type II/type I-like switch in FasR-death signaling. Here, we demonstrate that the apoptotic process occurring in type I-like K8-null hepatocytes is associated with accelerated SPOTS elaboration at surface membrane, along with manifestation of FasR cap formation and internalization. In addition, the lipid raft organization is altered in K8-null hepatocytes. While lipid raft inhibition impairs SPOTS formation in both WT and K8-null hepatocytes, the absence of K8/K18 IFs in the latter sensitizes SPOTS to actin de-polymerization, and perturbs ezrin compartmentalization. Overall, the results indicate that the K8/K18 IF loss in hepatocytes alters the initial FasR activation steps through perturbation of ezrin/actin interplay and lipid raft organization, which leads to a type II/type I switch in FasR-death signaling.  相似文献   

19.
Phosphorylation of keratin intermediate filaments (IF) is known to affect their assembly state and organization; however, little is known about the mechanisms regulating keratin phosphorylation. In this study, we demonstrate that shear stress, but not stretch, causes disassembly of keratin IF in lung alveolar epithelial cells (AEC) and that this disassembly is regulated by protein kinase C delta-mediated phosphorylation of keratin 8 (K8) Ser-73. Specifically, in AEC subjected to shear stress, keratin IF are disassembled, as reflected by their increased solubility. In contrast, AEC subjected to stretch showed no changes in the state of assembly of IF. Pretreatment with the protein kinase C (PKC) inhibitor, bisindolymaleimide, prevents the increase in solubility of either K8 or its assembly partner K18 in shear-stressed AEC. Phosphoserine-specific antibodies demonstrate that K8 Ser-73 is phosphorylated in a time-dependent manner in shear-stressed AEC. Furthermore, we showed that shear stress activates PKC delta and that the PKC delta peptide antagonist, delta V1-1, significantly attenuates the shear stress-induced increase in keratin phosphorylation and solubility. These data suggested that shear stress mediates the phosphorylation of serine residues in K8, leading to the disassembly of IF in alveolar epithelial cells. Importantly, these data provided clues regarding a molecular link between mechanically induced signal transduction and alterations in cytoskeletal IF.  相似文献   

20.
Keratins, the intermediate filament proteins of epithelial cells, connect to desmosomes, the cell-cell adhesion structures at the surface membrane. The building elements of desmosomes include desmoglein and desmocollin, which provide the actual cell adhesive properties, and desmoplakins, which anchor the keratin intermediate filaments to desmosomes. In the work reported here, we address the role of keratin 8 in modulating desmoplakin deposition at surface membrane in mouse hepatocytes. The experimental approach is based on the use of keratin 8- and keratin 18-null mouse hepatocytes as cell models. In wild-type mouse hepatocytes, desmoplakin is aligned with desmoglein and keratin 8 at the surface membrane. In keratin 8-null hepatocytes, the intermediate filament loss leads to alterations in desmoplakin distribution at the surface membrane, but not of desmoglein. Intriguingly, a significant proportion of keratin 18-null hepatocytes express keratin 8 at the surface membrane, associated with a proper desmoplakin alignment with desmoglein at desmosomes. A Triton treatment of the monolayer reveals that most of the desmoplakin present in either wild-type, keratin 8- or keratin 18-null hepatocytes is insoluble. Deletion analysis of keratin 8 further suggests that the recovery of desmoplakin alignment requires the keratin 8 rod domain. In addition, similarly to other works revealing a key role of desmoplakin phosphorylation on its interaction with intermediate filaments, we find that the phosphorylation status of the keratin 8 head domain affects desmoplakin distribution at desmosomes. Together, the data indicate that a proper alignment/deposition of desmoplakin with keratins and desmoglein in hepatocytes requires keratin 8, through a reciprocal phosphoserine-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号