首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During cell division all chromosomes must be segregated accurately to each daughter cell. Errors in this process give rise to aneuploidy, which leads to birth defects and is implicated in cancer progression. The spindle checkpoint is a surveillance mechanism that ensures high fidelity of chromosome segregation by inhibiting anaphase until all kinetochores have established bipolar attachments to spindle microtubules. Bub1 kinase is a core component of the spindle checkpoint, and cells lacking Bub1 fail to arrest in response to microtubule drugs and precociously segregate their DNA. The mitotic role(s) of Bub1 kinase activity remain elusive, and it is controversial whether this C-terminal domain of Bub1p is required for spindle checkpoint arrest. Here we make a detailed analysis of budding yeast cells lacking the kinase domain (bub1ΔK). We show that despite being able to arrest in response to microtubule depolymerisation and kinetochore-microtubule attachment defects, bub1ΔK cells are sensitive to microtubule drugs. This is because bub1ΔK cells display significant chromosome mis-segregation upon release from nocodazole arrest. bub1ΔK cells mislocalise Sgo1p, and we demonstrate that both the Bub1 kinase domain and Sgo1p are required for accurate chromosome biorientation after nocodazole treatment. We propose that Bub1 kinase and Sgo1p act together to ensure efficient biorientation of sister chromatids during mitosis.  相似文献   

2.
Although critical for spindle checkpoint signaling, the role kinetochores play in anaphase promoting complex (APC) inhibition remains unclear. Here we show that spindle checkpoint proteins are severely depleted from unattached kinetochores in fission yeast cells lacking Bub3p. Surprisingly, a robust mitotic arrest is maintained in the majority of bub3Δ cells, yet they die, suggesting that Bub3p is essential for successful checkpoint recovery. During recovery, two defects are observed: (1) cells mis-segregate chromosomes and (2) anaphase onset is significantly delayed. We show that Bub3p is required to activate the APC upon inhibition of Aurora kinase activity in checkpoint-arrested cells, suggesting that Bub3p is required for efficient checkpoint silencing downstream of Aurora kinase. Together, these results suggest that spindle checkpoint signals can be amplified in the nucleoplasm, yet kinetochore localization of spindle checkpoint components is required for proper recovery from a spindle checkpoint-dependent arrest.  相似文献   

3.
The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.  相似文献   

4.
The spindle checkpoint ensures accurate chromosome segregation by sending a signal from an unattached kinetochore to inhibit anaphase onset. Numerous studies have described the role of Bub3 in checkpoint activation, but less is known about its functions apart from the spindle checkpoint. In this paper, we demonstrate that Bub3 has an unexpected role promoting metaphase progression in budding yeast. Loss of Bub3 resulted in a metaphase delay that was not a consequence of aneuploidy or the activation of a checkpoint. Instead, bub3Δ cells had impaired binding of the anaphase-promoting complex/cyclosome (APC/C) with its activator Cdc20, and the delay could be rescued by Cdc20 overexpression. Kinetochore localization of Bub3 was required for normal mitotic progression, and Bub3 and Cdc20 colocalized at the kinetochore. Although Bub1 binds Bub3 at the kinetochore, bub1Δ cells did not have compromised APC/C and Cdc20 binding. The results demonstrate that Bub3 has a previously unknown function at the kinetochore in activating APC/C-Cdc20 for normal mitotic progression.  相似文献   

5.
In mitosis the checkpoint proteins ensure faithful chromosome segregation by delaying onset of anaphase until all sister chromatids align at the metaphase plate of the bipolar spindle correctly. In the present study we blocked the function of Bub1 during meiosis by microinjecting anti-Bub1 specific antibody into cytoplasm of mouse oocytes, and found that depletion of Bub1 induced evident cyclin B degradation and precocious anaphase onset. Bub1 suppression also overrode the checkpoint-dependent cell cycle arrest provoked by a low dosage of nocodazole. Furthermore, Bub1 depletion induced a significantly higher percentage of oocytes with misaligned chromosomes. In addition, we depicted the localization dynamics of Bub1 in response to spindle damage and its relationship with microtubules and chromosomes, providing further evidence for Bub1’s role as a spindle checkpoint protein. Our data suggest that Bub1 is a critical spindle checkpoint protein that regulates accurate chromosome alignment and homolog disjunction in mammalian oocyte meiosis.  相似文献   

6.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

7.
During mitosis, the spindle assembly checkpoint (SAC) responds to faulty attachments between kinetochores and the mitotic spindle by imposing a metaphase arrest until the defect is corrected, thereby preventing chromosome missegregation. A genetic screen to isolate SAC mutants in fission yeast yielded point mutations in three fission yeast SAC genes: mad1, bub3, and bub1. The bub1-A78V mutant is of particular interest because it produces a wild-type amount of protein that is mutated in the conserved but uncharacterized Mad3-like region of Bub1p. Characterization of mutant cells demonstrates that the alanine at position 78 in the Mad3-like domain of Bub1p is required for: 1) cell cycle arrest induced by SAC activation; 2) kinetochore accumulation of Bub1p in checkpoint-activated cells; 3) recruitment of Bub3p and Mad3p, but not Mad1p, to kinetochores in checkpoint-activated cells; and 4) nuclear accumulation of Bub1p, Bub3p, and Mad3p, but not Mad1p, in cycling cells. Increased targeting of Bub1p-A78V to the nucleus by an exogenous nuclear localization signal does not significantly increase kinetochore localization or SAC function, but GFP fused to the isolated Bub1p Mad 3-like accumulates in the nucleus. These data indicate that Bub1p-A78V is defective in both nuclear accumulation and kinetochore targeting and that a threshold level of nuclear Bub1p is necessary for the nuclear accumulation of Bub3p and Mad3p.  相似文献   

8.
The spindle checkpoint delays anaphase onset until all chromosomes have attached in a bi-polar manner to the mitotic spindle. Mad and Bub proteins are recruited to unattached kinetochores, and generate diffusible anaphase inhibitors. Checkpoint models propose that Mad1 and Bub1 act as stable kinetochore-bound scaffolds, to enhance recruitment of Mad2 and Mad3/BubR1, but this remains untested for Bub1. Here, fission yeast FRAP experiments confirm that Bub1 stably binds kinetochores, and by tethering Bub1 to telomeres we demonstrate that it is sufficient to recruit anaphase inhibitors in a kinase-independent manner. We propose that the major checkpoint role for Bub1 is as a signalling scaffold.  相似文献   

9.
The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B-independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B-mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.  相似文献   

10.
The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2+. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.  相似文献   

11.
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1’s kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.  相似文献   

12.
The spindle checkpoint delays the metaphase-to-anaphase transition in response to spindle and kinetochore defects. Genetic screens in budding yeast identified the Mad and Bub proteins as key components of this conserved regulatory pathway. Here we present the fission yeast homologue of Mad3p. Cells devoid of mad3(+) are unable to arrest their cell cycle in the presence of microtubule defects. Mad3p coimmunoprecipitates Bub3p, Mad2p, and the spindle checkpoint effector Slp1/Cdc20p. We demonstrate that Mad3p function is required for the overexpression of Mad2p to result in a metaphase arrest. Mad1p, Bub1p, and Bub3p are not required for this arrest. Thus, Mad3p appears to have a crucial role in transducing the inhibitory "wait anaphase" signal to the anaphase-promoting complex (APC). Mad3-green fluorescent protein (GFP) is recruited to unattached kinetochores early in mitosis and accumulates there upon prolonged checkpoint activation. For the first time, we have systematically studied the dependency of Mad3/BubR1 protein recruitment to kinetochores. We find Mad3-GFP kinetochore localization to be dependent upon Bub1p, Bub3p, and the Mph1p kinase, but not upon Mad1p or Mad2p. We discuss the implications of these findings in the context of our current understanding of spindle checkpoint function.  相似文献   

13.
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis-segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis-segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1-dependent checkpoint.  相似文献   

14.
The genomic stability of all organisms depends on the precise partition of chromosomes to daughter cells. The spindle assembly checkpoint (SAC) senses unattached kinetochores and prevents premature entry to anaphase, thus ensuring that all chromosomes attach to opposite spindle poles (bi-orientation) during mitosis. MPS1 is an evolutionarily conserved protein kinase required for the SAC and chromosome bi-orientation. Yet, its primary cellular substrate has remained elusive. We show that fission yeast Mph1 (MPS1 homologue) phosphorylates the kinetochore protein Spc7 (KNL1/Blinkin homologue) at the MELT repeat sequences. This phosphorylation promotes the in vitro binding to the Bub1-Bub3 complex, which is required for kinetochore-based SAC activation (Mad1-Mad2-Mad3 localization) and chromosome alignment. Accordingly, a non-phosphorylatable spc7-12A mutation abolishes kinetochore targeting of Bub1-Bub3, whereas a phospho-mimetic spc7-12E mutation forces them to localize at kinetochores throughout the entire cell cycle, even in the absence of Mph1. Thus, MPS1/Mph1 kinase locating at the unattached kinetochores initially creates a mark, which is crucial for SAC activation and chromosome bi-orientation. This mechanism seems to be conserved in human cells.  相似文献   

15.
Bub1 maintains centromeric cohesion by activation of the spindle checkpoint   总被引:1,自引:0,他引:1  
Bub1 is a component of the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures genome stability by delaying anaphase until all the chromosomes are stably attached to spindle microtubules via their kinetochores. To define Bub1's role in chromosome segregation, embryogenesis, and tissue homeostasis, we generated a mouse strain in which BUB1 can be inactivated by administration of tamoxifen, thereby bypassing the preimplantation lethality associated with the Bub1 null phenotype. We show that Bub1 is essential for postimplantation embryogenesis and proliferation of primary embryonic fibroblasts. Bub1 inactivation in adult males inhibits proliferation in seminiferous tubules, reducing sperm production and causing infertility. In culture, Bub1-deficient fibroblasts fail to align their chromosomes or sustain SAC function, yielding a highly aberrant mitosis that prevents further cell divisions. Centromeres in Bub1-deficient cells also separate prematurely; however, we show that this is a consequence of SAC dysfunction rather than a direct role for Bub1 in protecting centromeric cohesion.  相似文献   

16.
Background information. In eukaryotic cells, proper formation of the spindle is necessary for successful cell division. For faithful segregation of sister chromatids, each sister kinetochore must attach to microtubules that extend to opposite poles (chromosome bi‐orientation). At the metaphase—anaphase transition, cohesion between sister chromatids is removed, and each sister chromatid is pulled to opposite poles of the cell by microtubule‐dependent forces. Results. We have studied the role of the minus‐end‐directed motor protein dynein by analysing kinetochore dynamics in fission yeast cells deleted for the dynein heavy chain (Dhc1) or the light chain (Dlc1). In these mutants, we found an increased frequency of cells showing defects in chromosome segregation, which leads to the appearance of lagging chromosomes and an increased rate of chromosome loss. By following simultaneously kinetochore dynamics and localization of the checkpoint protein Mad2, we provide evidence that dynein function is not necessary for spindle‐assembly checkpoint inactivation. Instead, we have demonstrated that loss of dynein function alters chromosome segregation and activates the Mad2‐dependent spindle‐assembly checkpoint. Conclusions. These results show an unexpected role for dynein in the control of chromosome segregation in fission yeast, most probably operating during the process of bi‐orientation during early mitosis.  相似文献   

17.
The eukaryotic spindle assembly checkpoint (SAC) delays anaphase in the presence of chromosome attachment errors. Bub3 has been reported to be required for SAC activity in all eukaryotes examined so far. We find that Bub3, unlike its binding partner Bub1, is not essential for the SAC in fission yeast. As Bub3 is needed for the efficient kinetochore localization of Bub1, and of Mad1, Mad2 and Mad3, this implies that most SAC proteins do not need to be enriched at the kinetochores for the SAC to function. We find that Bub3 is also dispensable for shugoshin localization to the centromeres, which is the second known function of Bub1. Instead, Bub3, together with Bub1, has a specific function in promoting the conversion from chromosome mono‐orientation to bi‐orientation.  相似文献   

18.
In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.  相似文献   

19.
The spindle checkpoint regulates microtubule-based chromosome segregation and helps to maintain genomic stability [1,2]. Mutational inactivation of spindle checkpoint genes has been implicated in the progression of several types of human cancer. Recent evidence from budding yeast suggests that the spindle checkpoint is complex. Order-of-function experiments have defined two separable pathways within the checkpoint. One pathway, defined by MAD2, controls the metaphase-to-anaphase transition and the other, defined by BUB2, controls the exit from mitosis [3-6]. The relationships between the separate branches of the checkpoint, and especially the events that trigger the pathways, have not been defined. We localized a Bub2p-GFP fusion protein to the cytoplasmic side of the spindle pole body and used a kar9 mutant to show that cells with misoriented spindles are arrested in anaphase of mitosis. We used a kar9 bub2 double mutant to show that the arrest is BUB2 dependent. We conclude that the separate pathways of the spindle checkpoint respond to different classes of microtubules. The MAD2 branch of the pathway responds to kinetochore microtubule interactions and the BUB2 branch of the pathway operates within the cytoplasm, responding to spindle misorientation.  相似文献   

20.
Krishnan R  Pangilinan F  Lee C  Spencer F 《Genetics》2000,156(2):489-500
The spindle assembly checkpoint-mediated mitotic arrest depends on proteins that signal the presence of one or more unattached kinetochores and prevents the onset of anaphase in the presence of kinetochore or spindle damage. In the presence of either damage, bub2 cells initiate a preanaphase delay but do not maintain it. Inappropriate sister chromatid separation in nocodazole-treated bub2 cells is prevented when mitotic exit is blocked using a conditional tem1(c) mutant, indicating that the preanaphase failure in bub2 cells is a consequence of events downstream of TEM1 in the mitotic exit pathway. Using a conditional bub2(tsd) mutant, we demonstrate that the continuous presence of Bub2 protein is required for maintaining spindle damage-induced arrest. BUB2 is not required to maintain a DNA damage checkpoint arrest, revealing a specificity for spindle assembly checkpoint function. In a yeast two-hybrid assay and in vitro, Bub2 protein interacts with the septin protein Cdc3, which is essential for cytokinesis. These data support the view that the spindle assembly checkpoint encompasses regulation of distinct mitotic steps, including a MAD2-directed block to anaphase initiation and a BUB2-directed block to TEM1-dependent exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号