首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Calcium is a ubiquitous second messenger in urinary bladder smooth muscle (UBSM). In this study, small discrete elevations of intracellular Ca2+, referred to as Ca2+ sparklets have been detected in an intact detrusor smooth muscle electrical syncytium using a TIRF microscopy Ca2+ imaging approach. Sparklets were virtually abolished by the removal of extracellular Ca2+ (0.035±0.01 vs. 0.23±0.07 Hz/mm2; P<0.05). Co-loading of smooth muscle strips with the slow Ca2+ chelator EGTA-AM (10 mM) confirmed that Ca2+ sparklets are restricted to the cell membrane. Ca2+ sparklets were inhibited by the calcium channel inhibitors R-(+)-Bay K 8644 (1 μM) (0.034±0.02 vs. 0.21±0.08 Hz/mm2; P<0.05), and diltiazem (10 μM) (0.097±0.04 vs. 0.16±0.06 Hz/mm2; P<0.05). Ca2+ sparklets were unaffected by inhibition of P2X1 receptors α,β-meATP (10 μM) whilst sparklet frequencies were significantly reduced by atropine (1 μM). Ca2+ sparklet frequency was significantly reduced by PKC inhibition with Gö6976 (100 nM) (0.030±0.01 vs. 0.30±0.1 Hz/mm2; P<0.05), demonstrating that Ca2+ sparklets are PKC dependant. In the presence of CPA (10 μM), there was no apparent change in the overall frequency of Ca2+ sparklets, although the sparklet frequencies of each UBSM became statistically independent of each other (Spearman''s rank correlation 0.2, P>0.05), implying that Ca2+ store mediated signals regulate Ca2+ sparklets. Under control conditions, inhibition of store operated Ca2+ entry using ML-9 (100 μM) had no significant effect. Amplitudes of Ca2+ sparklets were unaffected by any agonists or antagonists, suggesting that these signals are quantal events arising from activation of a single channel, or complex of channels. The effects of CPA and ML-9 suggest that Ca2+ sparklets regulate events in the cell membrane, and contribute to cytosolic and sarcoplasmic Ca2+ concentrations.  相似文献   

2.
Mitochondrial Ca2+ uptake exerts dual effects on mitochondria. Ca2+ accumulation in the mitochondrial matrix dissipates membrane potential (ΔΨm), but Ca2+ binding of the intramitochondrial enzymes accelerates oxidative phosphorylation, leading to mitochondrial hyperpolarization. The levels of matrix free Ca2+ ([Ca2+]m) that trigger these metabolic responses in mitochondria in nerve terminals have not been determined. Here, we estimated [Ca2+]m in motor neuron terminals of Drosophila larvae using two methods: the relative responses of two chemical Ca2+ indicators with a 20-fold difference in Ca2+ affinity (rhod-FF and rhod-5N), and the response of a low-affinity, genetically encoded ratiometric Ca2+ indicator (D4cpv) calibrated against known Ca2+ levels. Matrix pH (pHm) and ΔΨm were monitored using ratiometric pericam and tetramethylrhodamine ethyl ester probe, respectively, to determine when mitochondrial energy metabolism was elevated. At rest, [Ca2+]m was 0.22 ± 0.04 μM, but it rose to ∼26 μM (24.3 ± 3.4 μM with rhod-FF/rhod-5N and 27.0 ± 2.6 μM with D4cpv) when the axon fired close to its endogenous frequency for only 2 s. This elevation in [Ca2+]m coincided with a rapid elevation in pHm and was followed by an after-stimulus ΔΨm hyperpolarization. However, pHm decreased and no ΔΨm hyperpolarization was observed in response to lower levels of [Ca2+]m, up to 13.1 μM. These data indicate that surprisingly high levels of [Ca2+]m are required to stimulate presynaptic mitochondrial energy metabolism.  相似文献   

3.
The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 μM) to high (1,024 μM) intracellular concentrations of calcium (Ca2+ i) using single-channel recording. Open probability (P o) increased with increasing Ca2+ i (K 0.5 11.2 ± 0.3 μM at +30 mV, Hill coefficient of 3.5 ± 0.3), reaching a maximum of ∼0.97 for Ca2+ i ∼ 100 μM. Increasing Ca2+ i further to 1,024 μM had little additional effect on either P o or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+ i (>100 μM), compared with three to four open and five to seven closed states at lower Ca2+ i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+ i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+ i. Kinetic schemes drawn from Eigen''s general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+ i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+ i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+ i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+ i could also approximate the gating from low to high Ca2+ i. The considered models can serve as working hypotheses for the gating of BK channels.  相似文献   

4.
To investigate modulation of the activation of cGMP-gated ion channels in cone photoreceptors, we measured currents in membrane patches detached from the outer segments of single cones isolated from striped bass retina. The sensitivity of these channels to activation by cGMP depends on the history of exposure to divalent cations of the membrane''s cytoplasmic surface. In patches maintained in 20 μM Ca++ and 100 μM Mg++ after excision, the current amplitude dependence on cGMP is well described by a Hill equation with average values of K 1/2, the concentration necessary to activate half the maximal current, of 86 μM and a cooperativity index, n, of 2.57. Exposing the patch to a solution free of divalent cations irreversibly increases the cGMP sensitivity; the average value of K 1/2 shifts to 58.8 μM and n shifts to 1.8. Changes in cGMP sensitivity do not affect other functional parameters of the ion channels, such as the interaction and permeation of mono- and divalent cations. Modulation of cGMP activation depends on the action of an endogenous factor that progressively dissociates from the channel as Ca++ concentration is lowered below 1 μM. The activity of the endogenous modulator is not well mimicked by exogenously added calmodulin, although this protein competes with the endogenous modulator for a common binding site. Thus, the modulation of cGMP affinity in cones depends on the activity of an unidentified molecule that may not be calmodulin.  相似文献   

5.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

6.
Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca2+ and Mg2+ plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca2+- and Mg2+-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca2+ activation (Ka = 4 µM) and inhibition by cytoplasmic Mg2+ (Ki = 10 µM at 100 nM Ca2+) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca2+, RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg2+ inhibition than those from sheep and rat. The Ka values for luminal Ca2+ activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca2+], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ∼10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg2+ as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca2+ and Mg2+ only occurred when cytoplasmic [Ca2+] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca2+ was strongly dependent on the Mg2+ concentration. Addition of physiological levels (1 mM) of Mg2+ raised the Ka for cytoplasmic Ca2+ to 30 µM (human and sheep) or 90 µM (rat) and raised the Ka for luminal Ca2+ to ∼1 mM in all species. This is the first report of the regulation by Ca2+ and Mg2+ of native RyR2 receptor activity from healthy human hearts.  相似文献   

7.
The sarcoplasmic/endoplasmic reticulum Ca2+ATPases (SERCAs) are the main Ca2+ pumps which decrease the intracellular Ca2+ level by reaccumulating Ca2+ into the sarcoplasmic reticulum. The neonatal SERCA1b is the major Ca2+ pump in myotubes and young muscle fibers. To understand its role during skeletal muscle differentiation its synthesis has been interfered with specific shRNA sequence. Stably transfected clones showing significantly decreased SERCA1b expression (cloneC1) were selected for experiments. The expression of the regulatory proteins of skeletal muscle differentiation was examined either by Western-blot at the protein level for MyoD, STIM1, calsequestrin (CSQ), and calcineurin (CaN) or by RT-PCR for myostatin and MCIP1.4. Quantitative analysis revealed significant alterations in CSQ, STIM1, and CaN expression in cloneC1 as compared to control cells. To examine the functional consequences of the decreased expression of SERCA1b, repeated Ca2+-transients were evoked by applications of 120 mM KCl. The significantly higher [Ca2+]i measured at the 20th and 40th seconds after the beginning of KCl application (112±3 and 110±3 nM vs. 150±7 and 135±5 nM, in control and in cloneC1 cells, respectively) indicated a decreased Ca2+-uptake capability which was quantified by extracting the maximal pump rate (454±41 μM/s vs. 144±24 μM/s, in control and in cloneC1 cells). Furthermore, the rate of calcium release from the SR (610±60 vs. 377±64 μM/s) and the amount of calcium released (843±75 μM vs. 576±80 μM) were also significantly suppressed. These changes were also accompanied by a reduced activity of CaN in cells with decreased SERCA1b. In parallel, cloneC1 cells showed inhibited cell proliferation and decreased myotube nuclear numbers. Moreover, while cyclosporineA treatment suppressed the proliferation of parental cultures it had no effect on cloneC1 cells. SERCA1b is thus considered to play an essential role in the regulation of [Ca2+]i and its ab ovo gene silencing results in decreased skeletal muscle differentiation.  相似文献   

8.
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

9.
Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion.  相似文献   

10.
Intracellular calcium concentration ([Ca2+]i) plays an important role in regulating most cellular processes, including apoptosis and survival, but its alterations are different and complicated under diverse conditions. In this study, we focused on the [Ca2+]i and its control mechanisms in process of hydrogen peroxide (H2O2)-induced apoptosis of primary cultured Sprague-Dawley (SD) rat retinal cells and 17β-estradiol (βE2) anti-apoptosis. Fluo-3AM was used as a Ca2+ indicator to detect [Ca2+]i through fluorescence-activated cell sorting (FACS), cell viability was assayed using MTT assay, and apoptosis was marked by Hoechst 33342 and annexin V/Propidium Iodide staining. Besides, PI3K activity was detected by Western blotting. Results showed: a) 100 μM H2O2-induced retinal cell apoptosis occurred at 4 h after H2O2 stress and increased in a time-dependent manner, but [Ca2+]i increased earlier at 2 h, sustained to 12 h, and then recovered at 24 h after H2O2 stress; b) 10 μM βE2 treatment for 0.5-24 hrs increased cell viability by transiently increasing [Ca2+]i, which appeared only at 0.5 h after βE2 application; c) increased [Ca2+]i under 100 µM H2O2 treatment for 2 hrs or 10 µM βE2 treatment for 0.5 hrs was, at least partly, due to extracellular Ca2+ stores; d) importantly, the transiently increased [Ca2+]i induced by 10 µM βE2 treatment for 0.5 hrs was mediated by the phosphatidylinositol-3-kinase (PI3K) and gated by the L-type voltage-gated Ca2+ channels (L-VGCC), but the increased [Ca2+]i induced by 100 µM H2O2 treatment for 2 hrs was not affected; and e) pretreatment with 10 µM βE2 for 0.5 hrs effectively protected retinal cells from apoptosis induced by 100 µM H2O2, which was also associated with its transient [Ca2+]i increase through L-VGCC and PI3K pathway. These findings will lead to better understanding of the mechanisms of βE2-mediated retinal protection and to exploration of the novel therapeutic strategies for retina degeneration.  相似文献   

11.
Plasma membrane large-conductance Ca2+-activated K+ (BKCa) channels and sarcoplasmic reticulum inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are expressed in a wide variety of cell types, including arterial smooth muscle cells. Here, we studied BKCa channel regulation by IP3 and IP3Rs in rat and mouse cerebral artery smooth muscle cells. IP3 activated BKCa channels both in intact cells and in excised inside-out membrane patches. IP3 caused concentration-dependent BKCa channel activation with an apparent dissociation constant (Kd) of ∼4 µM at physiological voltage (−40 mV) and intracellular Ca2+ concentration ([Ca2+]i; 10 µM). IP3 also caused a leftward-shift in BKCa channel apparent Ca2+ sensitivity and reduced the Kd for free [Ca2+]i from ∼20 to 12 µM, but did not alter the slope or maximal Po. BAPTA, a fast Ca2+ buffer, or an elevation in extracellular Ca2+ concentration did not alter IP3-induced BKCa channel activation. Heparin, an IP3R inhibitor, and a monoclonal type 1 IP3R (IP3R1) antibody blocked IP3-induced BKCa channel activation. Adenophostin A, an IP3R agonist, also activated BKCa channels. IP3 activated BKCa channels in inside-out patches from wild-type (IP3R1+/+) mouse arterial smooth muscle cells, but had no effect on BKCa channels of IP3R1-deficient (IP3R1−/−) mice. Immunofluorescence resonance energy transfer microscopy indicated that IP3R1 is located in close spatial proximity to BKCa α subunits. The IP3R1 monoclonal antibody coimmunoprecipitated IP3R1 and BKCa channel α and β1 subunits from cerebral arteries. In summary, data indicate that IP3R1 activation elevates BKCa channel apparent Ca2+ sensitivity through local molecular coupling in arterial smooth muscle cells.  相似文献   

12.
We have used the patch clamp technique to study the effects of inhibiting the apical Na+ transport on the basolateral small-conductance K+ channel (SK) in cell-attached patches in cortical collecting duct (CCD) of the rat kidney. Application of 50 μM amiloride decreased the activity of SK, defined as nP o (a product of channel open probability and channel number), to 61% of the control value. Application of 1 μM benzamil, a specific Na+ channel blocker, mimicked the effects of amiloride and decreased the activity of the SK to 62% of the control value. In addition, benzamil reduced intracellular Na+ concentration from 15 to 11 mM. The effect of amiloride was not the result of a decrease in intracellular pH, since addition 50 μM 5-(n-ethyl-n-isopropyl) amiloride (EIPA), an agent that specifically blocks the Na/H exchanger, did not alter the channel activity. The inhibitory effect of amiloride depends on extracellular Ca2+ because removal of Ca2+ from the bath abolished the effect. Using Fura-2 AM to measure the intracellular Ca2+, we observed that amiloride and benzamil significantly decreased intracellular Ca2+ in the Ca2+-containing solution but had no effect in a Ca2+-free bath. Furthermore, raising intracellular Ca2+ from 10 to 50 and 100 nM with ionomycin increased the activity of the SK in cell-attached patches but not in excised patches, suggesting that changes in intracellular Ca2+ are responsible for the effects on SK activity of inhibition of the Na+ transport. Since the neuronal form of nitric oxide synthase (nNOS) is expressed in the CCD and the function of the nNOS is Ca2+ dependent, we examined whether the effects of amiloride or benzamil were mediated by the NO-cGMP–dependent pathways. Addition of 10 μM S-nitroso-n-acetyl-penicillamine (SNAP) or 100 μM 8-bromoguanosine 3′:5′-cyclic monophosphate (8Br-cGMP) completely restored channel activity when it had been decreased by either amiloride or benzamil. Finally, addition of SNAP caused a significant increase in channel activity in the Ca2+-free bath solution. We conclude that Ca2+-dependent NO generation mediates the effect of inhibiting the apical Na+ transport on the basolateral SK in the rat CCD.  相似文献   

13.
We investigated the effects of temperature on white adipocyte exocytosis (measured as increase in membrane capacitance) and short-term adiponectin secretion with the aim to elucidate mechanisms important in regulation of white adipocyte stimulus-secretion coupling. Exocytosis stimulated by cAMP (included in the pipette solution together with 3 mM ATP) in the absence of Ca2+ (10 mM intracellular EGTA) was equal at all investigated temperatures (23°C, 27°C, 32°C and 37°C). However, the augmentation of exocytosis induced by an elevation of the free cytosolic [Ca2+] to ~1.5 μM (9 mM Ca2+ + 10 mM EGTA) was potent at 32°C or 37°C but less distinct at 27°C and abolished at 23°C. Adiponectin secretion stimulated by 30 min incubations with the membrane permeable cAMP analogue 8-Br-cAMP (1 mM) or a combination of 10 μM forskolin and 200 μM IBMX was unaffected by a reduction of temperature from 32°C to 23°C. At 32°C, cAMP-stimulated secretion was 2-fold amplified by inclusion of the Ca2+ ionophore ionomycin (1μM), an effect that was not observed at 23°C. We suggest that cooling affects adipocyte exocytosis/adiponectin secretion at a Ca2+-dependent step, likely involving ATP-dependent processes, important for augmentation of cAMP-stimulated adiponectin release.  相似文献   

14.
Somatostatin subtype-4 receptors (sst4) inhibit L-type calcium channel currents (ICa) in retinal ganglion cells (RGCs). Here we identify the signaling pathways involved in sst4 stimulation leading to suppression of ICa in RGCs. Whole cell patch clamp recordings were made on isolated immunopanned RGCs using barium as a charge carrier to isolate ICa. Application of the selective sst4 agonist, L-803 (10 nM), reduced ICa by 41.2%. Pretreatment of cells with pertussis toxin (Gi/o inhibitor) did not prevent the action of L-803, which reduced ICa by 34.7%. To determine the involvement of Gβγ subunits after sst4 activation, depolarizing pre-pulse facilitation paradigms were used to remove voltage-dependent inhibition of calcium channels. Pre-pulse facilitation did not reverse the inhibitory effects of L-803 on ICa (8.4 vs. 8.8% reductions, ctrl vs. L-803); however, pharmacologic inhibition of Gβγ reduced ICa suppression by L-803 (23.0%, P < 0.05). Inhibition of PKC (GF109203X; GFX) showed a concentration-dependent effect in preventing the action of L-803 on ICa (1 μM GFX, 34.3%; 5 μM GFX, 14.6%, P < 0.05). When both PKC and Gβγ were inhibited, the effects of L-803 on ICa were blocked (1.8%, P < 0.05). These results suggest that sst4 stimulation modulates RGC calcium channels via Gβγ and PKC activation. Since reducing intracellular Ca2+ is known to be neuroprotective in RGCs, modulating these sst4 signaling pathways may provide insights to the discovery of unique therapeutic targets to reduce intracellular Ca2+ levels in RGCs.  相似文献   

15.
Modulation of Ca2+ within cells is tightly regulated through complex and dynamic interactions between the plasma membrane and internal compartments. In this study, we exploit in vivo imaging strategies based on genetically encoded Ca2+ indicators to define changes in perikaryal Ca2+ concentration of intact photoreceptors. We developed double-transgenic zebrafish larvae expressing GCaMP3 in all cones and tdTomato in long-wavelength cones to test the hypothesis that photoreceptor degeneration induced by mutations in the phosphodiesterase-6 (Pde6) gene is driven by excessive [Ca2+]i levels within the cell body. Arguing against Ca2+ overload in Pde6 mutant photoreceptors, simultaneous analysis of cone photoreceptor morphology and Ca2+ fluxes revealed that degeneration of pde6cw59 mutant cones, which lack the cone-specific cGMP phosphodiesterase, is not associated with sustained increases in perikaryal [Ca2+]i. Analysis of [Ca2+]i in dissociated Pde6βrd1mouse rods shows conservation of this finding across vertebrates. In vivo, transient and Pde6-independent Ca2+ elevations (‘flashes'') were detected throughout the inner segment and the synapse. As the mutant cells proceeded to degenerate, these Ca2+ fluxes diminished. This study thus provides insight into Ca2+ dynamics in a common form of inherited blindness and uncovers a dramatic, light-independent modulation of [Ca2+]i that occurs in normal cones.  相似文献   

16.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

17.
The large-conductance Ca2+-activated K+ (BKCa) channel is essential for maintaining the membrane in a hyperpolarized state, thereby regulating neuronal excitability, smooth muscle contraction, and secretion. The BKCa α-subunit has three predicted initiation codons that generate proteins with N-terminal ends starting with the amino acid sequences MANG, MSSN, or MDAL. Because the N-terminal region and first transmembrane domain of the α-subunit are required for modulation by auxiliary β1-subunits, we examined whether β1 differentially modulates the N-terminal BKCa α-subunit isoforms. In the absence of β1, all isoforms had similar single-channel conductances and voltage-dependent activation. However, whereas β1 did not modulate the voltage-activation curve of MSSN, β1 induced a significant leftward shift of the voltage activation curves of both the MDAL and MANG isoforms. These shifts, of which the MDAL was larger, occurred at both 10 μm and 100 μm Ca2+. The β1-subunit increased the open dwell times of all three isoforms and decreased the closed dwell times of MANG and MDAL but increased the closed dwell times of MSSN. The distinct modulation of voltage activation by the β1-subunit may be due to the differential effect of β1 on burst duration and interburst intervals observed among these isoforms. Additionally, we observed that the related β2-subunit induced comparable leftward shifts in the voltage-activation curves of all three isoforms, indicating that the differential modulation of these isoforms was specific to β1. These findings suggest that the relative expression of the N-terminal isoforms can fine-tune BKCa channel activity in cells, highlighting a novel mechanism of BKCa channel regulation.  相似文献   

18.
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K+ channel inhibition increases [Ca2+]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconstriction in isolated pulmonary arteries (PAs) and attenuates 5-HT-inhibited K+ channel activities in PASMCs. In endothelium-denuded PA rings, KMUP-1 (1 μM) dose-dependently reduced 5-HT (100 μM) mediated contractile responses. Responses to KMUP-1 were reversed by K+ channel inhibitors (TEA, 10 mM, 4-aminopyridine, 5 mM, and paxilline, 10 μM). In primary PASMCs, KMUP-1 also dose-dependently restored 5-HT-inhibited voltage-gated K+-channel (Kv1.5 and Kv2.1) and large-conductance Ca2+-activated K+-channel (BKCa) proteins, as confirmed by immunofluorescent staining. Furthermore, 5-HT (10 μM)-inhibited Kv1.5 protein was unaffected by the PKA inhibitor KT5720 (1 μM) and the PKC activator PMA (1 μM), but these effects were reversed by KMUP-1 (1 μM), 8-Br-cAMP (100 μM), chelerythrine (1 μM), and KMUP-1 combined with a PKA/PKC activator or inhibitor. Notably, KMUP-1 reversed 5-HT-inhibited Kv1.5 protein and this response was significantly attenuated by co-incubation with the PKC activator PMA, suggesting that 5-HT-mediated PKC signaling can be modulated by KMUP-1. In conclusion, KMUP-1 ameliorates 5-HT-induced vasoconstriction and K+-channel inhibition through the PKC pathway, which could be valuable to prevent the development of PAH.  相似文献   

19.
Alginate lyases are enzymes that degrade alginate through β-elimination of the glycosidic bond into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a marine bacterioplankton species that can grow on alginate as its sole carbon source. We identified, purified, and characterized four polysaccharide lyase family 7 alginates lyases, AlyA, AlyB, AlyD, and AlyE, from V. splendidus 12B01. The four lyases were found to have optimal activity between pH 7.5 and 8.5 and at 20 to 25°C, consistent with their use in a marine environment. AlyA, AlyB, AlyD, and AlyE were found to exhibit a turnover number (kcat) for alginate of 0.60 ± 0.02 s−1, 3.7 ± 0.3 s−1, 4.5 ± 0.5 s−1, and 7.1 ± 0.2 s−1, respectively. The Km values of AlyA, AlyB, AlyD, and AlyE toward alginate were 36 ± 7 μM, 22 ± 5 μM, 60 ± 2 μM, and 123 ± 6 μM, respectively. AlyA and AlyB were found principally to cleave the β-1,4 bonds between β-d-mannuronate and α-l-guluronate and subunits; AlyD and AlyE were found to principally cleave the α-1,4 bonds involving α-l-guluronate subunits. The four alginate lyases degrade alginate into longer chains of oligomers.  相似文献   

20.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号