首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential binding of DNA primase to the nuclear matrix in HeLa cells   总被引:5,自引:0,他引:5  
Studies of the spatial organization of DNA replication have provided increasing evidence of the importance of the nuclear matrix. We have previously reported a relationship between rates of DNA synthesis and the differential binding of DNA polymerase alpha to the nuclear matrix over the S-phase. We now report the detection of DNA primase bound to the HeLa nuclear matrix. Matrix-bound primase was measured both indirectly, by the incorporation of [32P]dAMP into an unprimed single-stranded template, poly(dT), and directly, by the incorporation of [3H]AMP into matrix DNA. Characteristics of this system include a requirement for ATP, inhibition by adenosine 5'-O-(thiotriphosphate), a primase inhibitor, and insensitivity to aphidicolin and alpha-amanitine, inhibitors of polymerase alpha and RNA polymerase, respectively. Subcellular quantification of primase and polymerase alpha activity revealed that while most (approximately 72%) primase activity is bound to the matrix, only a minority (approximately 32%) of polymerase alpha activity is matrix-bound. Treatment of the nuclear matrix with beta-D-octylglucoside allowed the solubilization of approximately 54% of primase activity and approximately 39% of the polymerase alpha activity. This data provides further evidence of a structural and functional role for the nuclear matrix in DNA replication. The ability to solubilize matrix-bound replicative enzymes may prove to be an important tool in the elucidation of the spatial organization of DNA replication.  相似文献   

2.
We have investigated whether or not ATP or other nucleoside di- and trisphosphates (including some nonhydrolysable ATP analogues) can stimulate the activity and/or the processivity of DNA polymerase α associated with the nuclear matrix obtained from HeLa S3 cell nuclei that had been stabilized at 37°C prior to subfractionation, as has been reported previously for DNA polymerase α bound to the nuclear matrix prepared from 22-h regenerating rat liver. We have found that HeLa cell matrix-associated DNA polymerase α activity could not be stimulated at all by ATP or other nucleotides, a behaviour which was shared also by DNA polymerase α activity that solubilizes from cells during the isolation of nuclei and that is thought to be a form of the enzyme not actively engaged in DNA replication. Moreover, the processivity of matrix-bound DNA polymerase α activity was low (< 10 nucleotides). These results were obtained with the matrix prepared with either 2M NaCl or 0·25 M (NH4)2SO4 and led us to consider that a 37° incubation of isolated nuclei renders resistant to high-salt extraction a form of DNA polymerase α which is unlikely to be involved in DNA replication in vivo.  相似文献   

3.
Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.  相似文献   

4.
This paper describes studies on the processivity of an [alpha]-type DNA polymerase from maize (Zea mays L.) embryonic axes, designated as DNA polymerase 2. Using poly(dA)/oligo(dT) as template, DNA polymerase 2 has a processivity of 18 ([plus or minus]5) nucleotides incorporated, a value much lower than that found for wheat [alpha]-type DNA polymerase (P. Laquel, S. Litvak, M. Castroviejo [1993] Plant Physiol 102: 107-114). Conditions that maximally stimulate enzyme activity, such as 100 mM KCl and 12 mM Mg2+, are strongly inhibitory of processivity and cause the enzyme to become distributive under these conditions. Optimal concentrations for processivity are 10 mM KCl and 1 to 2 mM Mg2+. Both enzyme activity and processivity were found to be similar at different Mn2+ concentrations. Both DNA polymerase 2 activity and processivity are greatly reduced by spermine and N-ethylmaleimide. A distinguishing feature of processivity in DNA polymerase 2 was the response to ATP, which not only stimulated processivity by more than 2-fold, but also produced a distinctive pattern in which the enzyme seemed to pause every 10 nucleotides, reaching a value of 40 to 50 nucleotides incorporated. This pattern was observed in some, but not all, heparin-Sepharose fractions with enzyme activity, suggesting the possibility of different DNA polymerase 2 complexes.  相似文献   

5.
D Yee  V W Armstrong  F Eckstein 《Biochemistry》1979,18(19):4116-4120
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) and adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) can replace adenosine triphosphate (ATP) in the initiation reaction catalyzed by deoxyribonucleic acid (DNA) dependent ribonucleic acid (RNA) polymerase from Escherichia coli. In both cases, the Sp diastereomer is a better initiator than the Rp isomer. The diasteromers of 3'-uridyl 5'-adenosyl ,O-phosphorothioate [Up(S)A] can replace UpA in the primed initiation reaction catalyzed by RNA polymerase; however, the Rp diastereomer is a better initiator than the Sp isomer. By using ATP or CpA as initiator and UTP alpha S, isomer A, as substrate, we determined the stereochemical courses of both the initiation and primed initiation reactions, respectively, with T7 DNA template and found them to proceed with inversion of configuration. Determination of the stereochemical course of the pyrophosphate exchange reaction catalyzed by RNA polymerase provides evidence that this reaction is the reverse of the phosphodiester bond-forming reaction.  相似文献   

6.
DNA polymerase alpha activity was markedly higher in all nuclear subfractions, including nuclear matrix, from transplanted R3230AC mammary adenocarcinomas than in the analogous fractions from mammary gland of same tumor-bearing pregnant or lactating rats. Changes in host lactational status had no significant effect on subnuclear distribution of tumor DNA polymerase alpha activity, with the majority (60-75%) localized in soluble nucleoplasm and a significant amount (13-20%) retained in the nuclear matrix. In the host mammary gland, nuclear matrix-bound DNA polymerase alpha was highest, accounting for 48% of total nuclear activity, during late pregnancy when mammary cells undergo rapid raplication. During lactation, when cells in mammary gland cease to divide, only 8% of enzyme activity was in the nuclear matrix, while the majority (60-80%) of DNA polymerase alpha activity was localized in nucleoplasm. In both R3230AC tumor and mammary gland regardless of host's lactational status, the majority (60-80%) of DNA polymerase beta activity was localized in the high salt-soluble chromatin. These present data thus suggest that, regardless of host lactational status, R3230AC tumor has many cycling cells, each with a large pool of DNA polymerase alpha molecules maintaining maximal and constant replicative activity, while normal mammary gland cells have a smaller pool of DNA polymerase alpha which become primarily matrix-bound only during active cell replication during late pregnancy. A constant localization of nuclear DNA polymerase beta in chromatin in both mammary gland and the tumor suggest it is not important in mammary cell proliferation.  相似文献   

7.
J M Collins  A K Chu 《Biochemistry》1987,26(18):5600-5607
It is well-known that there are multiple forms of DNA polymerase alpha. In order to determine which form(s) is (are) tightly bound, the activities were dissociated from DNA-poor nuclear matrices, with octyl beta-D-glucoside. Sucrose gradient sedimentation analysis revealed three bands with s values of 7.5, 10.5, and 13. The 7.5S form was free of DNA primase and represented only 10% of the total DNA polymerase alpha bound to the nuclear matrix. The 13S and the 10.5S forms each contained DNA primase activity. The 10.5S form comprised 85% of the DNA polymerase alpha activity and 95% of the DNA primase activity, dissociated from the nuclear matrix. Neither temperature of nuclease digestion nor various salt treatments of nuclei had significant effects on the proportions of DNA polymerase alpha and DNA primase activities bound to, or subsequently dissociated from, nuclear matrices. In a comparison of primase activity bound to the nuclear matrix, dissociated from the nuclear matrix, and in the soluble fraction, it was found that the bound activity had a lower ATP dependence, had less KCl inhibition, and was less sensitive to heat, compared to the dissociated and soluble activities. No differences in Mg2+ or pH dependence were noted. The amounts of DNA polymerase alpha and DNA primase activities bound to the nuclear matrix varied over the cell cycle of synchronized cells. Over the S phase, there were two peaks of matrix-bound DNA primase and two peaks of subsequently dissociated DNA polymerase alpha-DNA primase complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
HeLa S3 cells were synchronized by a double thymidine block or aphidicolin treatment and the levels of nuclear matrix-bound DNA polymerase alpha activity were then measured using activated calf thymus DNA as template. The nuclear matrix was obtained by 2 M NaCl extraction and DNase I digestion of isolated nuclei incubated at 37 degrees C for 45 min prior to subfractionation. In all phases of the cell cycle 25-30% of nuclear DNA polymerase alpha activity remained matrix-bound, even when cells were in the G1 phase. No dynamic association of DNA polymerase alpha activity with the matrix was seen, at variance with previous results obtained in regenerating rat liver. The variations measured in matrix-bound activity closely followed those detected in isolated nuclei throughout the cell cycle. If nuclei were not heat-stabilized very low levels of DNA polymerase alpha activity were measured in the matrix (1-2% of total nuclear activity). Heat incubation of nuclei failed to produce any enrichment in matrix-associated newly replicated DNA, whereas the sulfhydryl cross-linking chemical sodium tetrathionate did. Therefore the results obtained after the heat stabilization procedure do not completely fit with the model that envisions the nuclear matrix as the active site where eucaryotic DNA replication takes place.  相似文献   

9.
Biochemical fractionation was combined with high resolution electron microscopic autoradiography to study the localization in rat liver nuclear matrix of attached DNA fragments, in vivo replicated DNA, and in vitro synthesized DNA. In particular, we determined the distribution of these DNA components with the peripheral nuclear lamina versus more internally localized structural elements of isolated nuclear matrix. Autoradiography demonstrated that the bulk of in vivo newly replicated DNA associated with the nuclear matrix (71%) was found within internal matrix regions. A similar interior localization was observed in isolated nuclei and in situ in whole liver tissue. Likewise, isolated nuclear lamina contained only a small amount (12%) of the total matrix-bound, newly replicated DNA. The structural localization of matrix-bound DNA fragments was examined following long-term in vivo labeling of the DNA. The radioactive DNA fragments were found predominantly within interior regions of the matrix structure (77%), and isolated nuclear lamina contained less than 15% of the total nuclear matrix-associated DNA. Most of the endogenous DNA template sites for the replicative enzyme DNA polymerase alpha (approximately 70%) were also sequestered within interior regions of the matrix. In contrast, a majority of the endogenous DNA template sites for DNA polymerase beta (a presumptive repair enzyme) were closely associated with the peripheral nuclear lamina. A similar spatial distribution for both polymerase activities was measured in isolated nuclei before matrix fractionation. Furthermore, isolated nuclear lamina contained only a small proportion of total matrix-bound DNA polymerase alpha endogenous and exogenous template activities (3-12%), but a considerable amount of the corresponding beta polymerase activities (47-52%). Our results support the hypothesis that DNA loops are both anchored and replicated at nuclear matrix-bound sites that are predominantly but not exclusively associated with interior components of the matrix structure. Our results also suggest that the sites of nuclear DNA polymerase beta-driven DNA synthesis are uniquely sequestered within the characteristic peripheral heterochromatin shell and associated nuclear envelope structure, where they may potentially participate in DNA repair and/or replicative functions.  相似文献   

10.
Incubation of the recA protein of Escherichia coli with the ATP analog adenosine 5'-O-(3-thiotriphosphate) (ATP(gamma S)) in the presence of DNA produces an irreversible inhibition of ATPase activity, although in the presence of ATP, ATP(gamma S) shows an initial competitive inhibition. ATP(gamma S) is not appreciably hydrolyzed by recA protein and the inhibition of ATPase activity is due to the formation of stable complexes which contain equimolar amounts of ATP(gamma S) and recA protein. Formation of stable complexes requires DNA, which is also stably bound to recA protein in the presence of ATP(gammaS), at a ratio of 5 to 10 nucleotides/recA protein monomer. The DNA requirement is satisfied by either single-or double-stranded DNA, and in the latter case, the pH dependence is comparable to that observed for ATP hydrolysis. Binding of ATP(gamma S) is inhibited by other nucleoside di- and triphosphates with efficiencies corresponding to their inhibitory effects on the ATPase activity of recA protein.  相似文献   

11.
As a step toward the molecular elucidation of the putative replicational apparatus associated with the nuclear matrix, we have investigated the possible matrix association of several replicational related enzymes. In addition to the previously identified DNA polymerase alpha, DNA primase, 3'-5' exonuclease, RNase H, and DNA methylase were all recovered at significant levels (20-30% of total nuclear activity) in nuclear matrix isolated from regenerating rat liver during maximal in vivo replication (22 h post-hepatectomy). In contrast, DNA ligase was not detected on the nuclear matrix even though significant activity was present in isolated nuclei. Examination of the replicative dependency of these enzyme activities following partial hepatectomy revealed pre-replicative elevations which were distinct for each matrix-bound enzyme. A second late-replicative peak in DNA methylase is consistent with a role of this matrix-bound enzyme in the maintenance of the inheritable methylation pattern. Mild sonication resulted in a significant release of all of these activities except RNase H. A major portion of the matrix-solubilized DNA polymerase alpha, DNA primase, 3'-5' exonuclease, and DNA methylase activities cosedimented on sucrose gradients between approximately 8-12 S. Our results are consistent with the organization of at least a portion of these replicative enzymes into nuclear matrix-bound replicational complexes. We also propose a novel pre-replicative assembly model of the matrix-bound replicational apparatus in which DNA primase plays an initial and critical role.  相似文献   

12.
Apparent stimulation of calf thymus DNA polymerase alpha by ATP.   总被引:2,自引:2,他引:0       下载免费PDF全文
C K Tan  M J So  K M Downey    A G So 《Nucleic acids research》1987,15(5):2269-2278
The mechanism by which millimolar concentrations of ATP stimulate the activity and increase the processivity of calf thymus DNA polymerase alpha has been investigated with poly(dA)/oligo(dT) as template/primer to eliminate possible effects due to primer synthesis. The effect of ATP on the rate of DNA synthesis with this template/primer was found to be dependent upon whether or not the ATP was neutralized and the species of buffer used in the reaction. The present studies suggest that ATP stimulation of calf thymus DNA polymerase can be attributed to changes in the pH of the reaction mixture, a shift in the magnesium ion optimum, or both. Furthermore, effects of ATP on the processivity of DNA polymerase alpha could be mimicked by lowering the pH of the reaction mixture.  相似文献   

13.
14.
Kaposi’s sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a newly identified virus with tumorigenic potential. Here, we cloned and expressed the DNA polymerase (Pol-8) of KSHV and its processivity factor (PF-8). Pol-8 bound specifically to PF-8 in vitro. Moreover, the DNA synthesis activity of Pol-8 was shown in vitro to be strongly dependent on PF-8. Addition of PF-8 to Pol-8 allowed efficient synthesis of fully extended DNA products corresponding to the full-length M13 template (7,249 nucleotides), whereas Pol-8 alone could incorporate only several nucleotides. The specificity of PF-8 and Pol-8 for each other was demonstrated by their inability to be functionally replaced by the DNA polymerases and processivity factors of herpes simplex virus 1 and human herpesvirus 6.  相似文献   

15.
DNA polymerase α activity was markedly higher in all nuclear subfractions, including nuclear matrix, from transplanted R3230AC mammary adenocarcinomas than in the analogous fractions from mammary gland of same tumor-bearing pregnant or lactating rats. Changes in host lactational status had no significant effect on subnuclear distribution of tumor DNA polymerase α activity, with the majority (60–75%) localized in soluble nucleoplasm and a significant amount (13–20%) retained in the nuclear matrix. In the host mammary gland, nuclear matrix-bound DNA polymerase α was highest, accounting for 48% of total nuclear activity, during late pregnancy when mammary cells undergo rapid raplication. During lactation, when cells in mammary gland cease to divide, only 8% of enzyme activity was in the nuclear matrix, while the majority (60–80%) of DNA polymerase α activity was localized in nucleoplasm. In both R3230AC tumor and mammary gland regardless of host's lactational status, the majority (60–80%) of DNA polymerase β activity was localized in the high salt-soluble chromatin. These present data thus suggest that, regardless of host lactational status, R3230AC tumor has many cycling cells, each with a large pool of DNA polymerase α molecules maintaining maximal and constant replicative activity, while normal mammary gland cells have a smaller pool of DNA polymerase α which become primarily matrix-bound only during active cell replication during late pregnancy. A constant localization of nuclear DNA polymerase β in chromatin in both mammary gland and the tumor suggest it is not important in mammary cell proliferation.  相似文献   

16.
In the absence of other proteins, the DNA polymerase (Pol-8) of Kaposi's sarcoma herpesvirus incorporates only several nucleotides from a primer template. However, association with the Kaposi's sarcoma herpesvirus processivity factor (PF-8) enables Pol-8 to incorporate thousands of nucleotides. Unlike the well described sliding clamp processivity factors, eukaryotic proliferating cell nuclear antigen and Escherichia coli beta-subunit, PF-8 and other herpesvirus processivity factors do not require a clamp loader or ATP to bind to template DNA. To begin to understand the mechanism used by PF-8 to achieve processivity, we have now purified PF-8 and demonstrated that it is a dimer both in solution and on the DNA. Mutational analysis of the PF-8 protein (396R) indicates that residues between 277 and 304 as well as the N-terminal 21 amino acids are required for dimerization. The results further correlate PF-8 dimerization with binding to Pol-8 and stabilizing Pol-8 on primer template. Notably, although removal of only 26 residues from the C terminus of PF-8 does not affect its ability to form dimers on DNA or to bind Pol-8, only short DNA chains (<100 nucleotides) are synthesized. This indicates that full-length PF-8 is necessary to enable Pol-8 to incorporate thousands of nucleotides. Interestingly, cross-linking of the processivity factor UL44 of cytomegalovirus reveals that it is a dimer in solution also.  相似文献   

17.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA.  相似文献   

18.
DNA polymerase III holoenzyme (holenzyme) has an ATPase activity elicited only by a primed DNA template. Reaction of preformed ATP.holoenzyme complex with a primed template results in hydrolysis of the ATP bound to the holoenzyme, release of ADP and Pi, and formation of an initiation complex between holoenzyme and the primed template. Approximately two ATP molecules are hydrolyzed for each initiation complex formed, a value in keeping with the number bound in the ATP.holoenzyme complex. The possibility that the latter and the initiation complex contain two holoenzyme molecules is supported by the presence of two beta monomers in the initiation complex. Holoenzyme action in the absence of ATP resembles that of pol III (the holoenzyme core) or DNA polymerase III (holoenzyme lacking the beta subunit), with or without ATP, in sensitivity to salt and in processivity of elongation. The initiation complex formed by ATP-activated holoenzyme resists a level of KCl (150 mM) that completely inhibits nonactivated holoenzyme and the incomplete forms of the holoenzyme, and displays a processivity at least 20 times greater. Upon completing replication of available template, holoenzyme can dissociate and form an initiation complex with another primed template, provided ATP is available to reactivate the holoenzyme. By inference, no essential subunits are lost in the cycle of initiation, elongation and dissociation.  相似文献   

19.
The DNA polymerase holoenzyme of bacteriophage T4 contains, besides the DNA polymerase itself (the gene 43 protein), a complex of the protein products of T4 genes 44 and 62 (a DNA-dependent ATPase) and of gene 45. Together, the 44/62 and 45 proteins form an ATP-dependent "sliding clamp" that holds a moving DNA polymerase molecule at the 3' terminus of a growing DNA chain. We have used a unique DNA fragment that forms a short hairpin helix with a single-stranded 5' tail (a "primer-template junction") to map the binding sites for these polymerase accessory proteins by DNA footprinting techniques. In the absence of the DNA polymerase, the accessory proteins protect from DNase I cleavage 19-20 nucleotides just behind the 3' end of the primer strand and 27-28 nucleotides on the complementary portion of the template strand. Detection of this DNA-protein complex requires the 44/62 and 45 proteins plus the nonhydrolyzable ATP analogue adenosine 5'-O-(thiotriphosphate). The complex is not detected in the presence of ATP. We suggest that ATP hydrolysis by the 44/62 protein normally activates the accessory proteins at a primer-template junction, permitting the DNA polymerase to bind and thus form the complete holoenzyme. However, when the polymerase is missing, as in these experiments, ATP hydrolysis is instead followed by a release (or loosening) of the accessory protein complex.  相似文献   

20.
Microtubule-associated protein-2 (MAP-2) isolated from porcine brains stimulated DNA synthesis catalyzed by the nuclear matrix isolated from Physarum polycephalum in the presence of activated DNA as exogenous templates. The degree of the stimulation depended on the amount of the nuclear matrix, but not on that of the template. MAP-2 also stimulated DNA polymerase alpha activity solubilized from nuclei, but not DNA polymerase beta activity. These results suggest that MAP-2 stimulates DNA synthesis by interacting with the putative DNA replication machinery including DNA polymerase alpha bound to the matrix. Similar stimulation occurred in the nuclear matrix isolated from HeLa and rat ascites hepatoma cells, which strongly suggests that MAP-2 is involved in the control of DNA replication in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号