首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxins (LXs) or the lipoxygenase interaction products are generated from arachidonic acid via sequential actions of lipoxygenases and subsequent reactions to give specific trihydroxytetraene-containing eicosanoids. These unique structures are formed during cell-cell interactions and appear to act at both temporal and spatially distinct sites from other eicosanoids produced during the course of inflammatory responses and to stimulate natural resolution. Lipoxin A4 (LXA4) and lipoxin B4 (LXB4) are positional isomers that each possesses potent cellular and in vivo actions. These LX structures are conserved across species. The results of numerous studies reviewed in this work now confirm that they are the first recognized eicosanoid chemical mediators that display both potent anti-inflammatory and pro-resolving actions in vivo in disease models that include rabbit, rat, and mouse systems. LXs act at specific GPCRs as agonists to regulate cellular responses of interest in inflammation and resolution. Aspirin has a direct impact in the LX circuit by triggering the biosynthesis of endogenous epimers of LX, termed the aspirin-triggered 15-epi-LX, that share the potent anti-inflammatory actions of LX. Stable analogs of LXA4, LXB4, and aspirin-triggered lipoxin were prepared, and several of these display potent actions in vitro and in vivo. The results reviewed herein implicate a role of LX and their analogs in many common human diseases including airway inflammation, asthma, arthritis, cardiovascular disorders, gastrointestinal disease, periodontal disease, kidney diseases and graft-vs.-host disease, as well as others where uncontrolled inflammation plays a key role in disease pathogenesis. Hence, the LX pathways and mechanisms reviewed to date in this work provide a basis for new approaches to treatment of many common human diseases that involve inflammation.  相似文献   

2.
The lipoxins (LX) are a class of potent endogenous oxygenated products that are enzymatically generated from arachidonic acid and have novel anti-inflammatory properties and promote resolution. Elucidation of the biochemical pathways involved in the metabolic inactivation of LX and the discovery of the aspirin-triggered lipoxins (ATL) provided the basis for the design and synthesis of stable analogs of LX and ATL. This special issue review describes the efforts that led to the design and synthesis of stable LX/ATL mimetics, which permitted the detailed elucidation of their novel biological roles, leading to the development of new anti-inflammatory agents that mimic their actions. These synthetic molecules provided the means to uncover the physiologic roles of both the LX and the ATL biosynthetic pathways which led to several unexpected discoveries. Among these findings is the involvement of polyisoprenyl phosphates (PIPP) in intracellular signaling mediated by presqualene diphosphate (PSDP), and the recognition of the novel roles of these lipid mediators in regulating cell trafficking during inflammation as well as in promoting resolution of inflammatory processes. These efforts also provided the basis for examining the potential therapeutic role of LX/ATL stable mimetics and led to the development of new analogs with improved pharmacokinetics that opened the way to potentially new approaches to treating human diseases.  相似文献   

3.
Lipoxins (LX) and aspirin-triggered LX (ATL) are eicosanoids generated during inflammation via transcellular biosynthetic routes that elicit distinct anti-inflammatory and proresolution bioactions, including inhibition of leukocyte-mediated injury, stimulation of macrophage clearance of apoptotic neutrophils, repression of proinflammatory cytokine production, and inhibition of cell proliferation and migration. Recently, it was reported that aspirin induces heme oxygenase-1 (HO-1) expression on endothelial cells (EC) in a COX-independent manner, what confers protection against prooxidant insults. However, the underlying mechanisms remain unclear. In this study, we investigated whether an aspirin-triggered lipoxin A4 stable analog, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 (ATL-1) was able to induce endothelial HO-1. Western blot analysis showed that ATL-1 increased HO-1 protein expression associated with increased mRNA levels on EC in a time- and concentration-dependent fashion. This phenomenon appears to be mediated by the activation of the G protein-coupled LXA4 receptor because pertussis toxin and Boc-2, a receptor antagonist, significantly inhibited ATL-1-induced HO-1 expression. We demonstrate that treatment of EC with ATL-1 inhibited VCAM and E-selectin expression induced by TNF- or IL-1. This inhibitory effect of the analog is modulated by HO-1 because it was blocked by SnPPIX, a competitive inhibitor that blocks HO-1 activity. Our results establish that ATL-1 induces HO-1 in human EC, revealing an undescribed mechanism for the anti-inflammatory activity of these lipid mediators. signaling transduction; resolution of inflammation  相似文献   

4.
Resolvins (Rvs) are oxygenated products derived from omega-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid that carry potent protective bioactions present in resolving inflammatory exudates. Resolvin E1 (RvE1) is biosynthesized in vivo from EPA via transcellular biosynthetic routes during cell-cell interactions, and thus RvE1 is formed in vivo during multicellular responses such as inflammation and microbial infections. RvE1 protects tissues from leukocyte-mediated injury and counterregulates proinflammatory gene expression. These newly identified Rvs may underlie the beneficial actions of omega-3 PUFAs especially in chronic disorders where unresolved inflammation is a key mechanism of pathogenesis. Here, we present an overview of the biosynthesis of RvE1, with a focus on the aspirin-triggered and microbial P450-initiated pathways. The generation of RvE1 and its actions appear to dampen acute leukocyte responses and facilitate the resolution of inflammation.  相似文献   

5.
Multicellular responses to infection, injury, or inflammatory stimuli lead to the formation and release of a wide range of local chemical mediators by the host. The integrated response of the host is essential in health and disease, thus it is important to achieve a more complete understanding of the local cellular and molecular events that govern the formation and actions of local mediators that can serve as endogenous counter-regulatory functions in effector cells of the immune system or endogenous local mediators of resolution. Since these compounds in theory and in experimental models of inflammation appear to control the duration and magnitude of inflammation, knowledge of their elucidation could provide new avenues for appreciating the molecular phenotypes of many inflammatory diseases. The first of these endogenous local counter-regulators recognized were the lipoxins, which are trihydroxytetraene-containing lipid mediators that can be formed during cell–cell interactions via transcellular biosynthesis. Since this circuit of lipoxin formation and action appears to be of physiological relevance for the resolution of inflammation, therapeutic modalities targeted at this system are likely to have fewer unwanted side effects acting as agonists than the inhibitor approach currently used in anti-inflammatory therapies. This chapter provides an overview of the recent knowledge about the biosynthesis and bioactions of the novel anti-inflammatory lipid mediators, resolvins, docosatrienes, and neuroprotectins, and their aspirin-triggered counterparts. These novel families of lipid-derived mediators, which carry anti-inflammatory, pro-resolving, and protective properties, were originally isolated during spontaneous resolution. These new pathways open new opportunities for appreciating the role of neutrophils in the generation of potent protective lipid mediators and protective host signaling.  相似文献   

6.
Endogenous chemical mediators or autacoids play key roles in controlling inflammation and its programmed resolution. Among them, it is known that lipoxins (LX) and aspirin-triggered LX (ATL) evoke bioactions in a range of physiologic and pathophysiologic processes and serve as endogenous lipid/chemical mediators that stop neutrophilic infiltration and initiate resolution. LXA4, ATL and their metabolic stable analogs elicit cellular responses and regulate PMN in vivo via interacting with their specific receptor, namely ALX. ALX is the first cloned and identified lipoxygenase-derived eicosanoid receptor with cell type-specific signaling pathways. Also, ALX could regulate PMN by interacting with each class of ligands (lipid vs. peptide) within specific phases of an inflammatory response. Together LX, ATL and ALX may provide new opportunities to design "resolution-targeted" therapies with high degree of precision in controlling inflammation. In this chapter, we give an overview and update of the current actions for LX and ATL, the identification of ALX and their novel anti-inflammatory and pro-resolving signals.  相似文献   

7.
A twist in anti-inflammation: annexin 1 acts via the lipoxin A4 receptor   总被引:2,自引:0,他引:2  
The inflammatory response is a life-saving protective process mounted by the body to overcome pathogen infection and injury; however, in chronic inflammatory pathologies this response can become deregulated. The existence of specialized anti-inflammatory pathways/mediators that operate in the body to down-regulate inflammation have now emerged. Thus, persistence of inflammation leading to pathology could be due to malfunctioning of one or more of these counter-regulatory pathways. Here we focus on one of them, the anti-inflammatory mediator annexin 1, and provide an update on its inhibitory effects upon the leukocyte trafficking process. In particular, recent evidence that receptors of the formyl-peptide family, which includes also the lipoxin A4 receptor, could be the annexin 1 receptor(s) in the context of anti-inflammation might provide new avenues for exploiting this pathway for drug discovery.  相似文献   

8.
Control of inflammation is crucial to prevent damage to the host during infection. Lipoxins and aspirin-triggered lipoxins are crucial modulators of proinflammatory responses; however, their intracellular mechanisms have not been completely elucidated. We previously showed that lipoxin A4 (LXA4) controls migration of dendritic cells (DCs) and production of interleukin (IL)-12 in vivo. In the absence of LXA4 biosynthetic pathways, the resulting uncontrolled inflammation during infection is lethal, despite pathogen clearance. Here we show that lipoxins activate two receptors in DCs, AhR and LXAR, and that this activation triggers expression of suppressor of cytokine signaling (SOCS)-2. SOCS-2-deficient DCs are hyper-responsive to microbial stimuli, as well as refractory to the inhibitory actions of LXA4, but not to IL-10. Upon infection with an intracellular pathogen, SOCS-2-deficient mice had uncontrolled production of proinflammatory cytokines, decreased microbial proliferation, aberrant leukocyte infiltration and elevated mortality. We also show that SOCS-2 is a crucial intracellular mediator of the anti-inflammatory actions of aspirin-induced lipoxins in vivo.  相似文献   

9.
Lipoxin A4 (LXA4) and aspirin-triggered 15-epi-LXA4 (ATL) are emerging as endogenous braking signals for neutrophil-mediated tissue injury. LXA4 and ATL and their metabolically stable analogues display potent inhibitory actions in human isolated cells and blood, including attenuation of expression of adhesion molecules on leukocytes and endothelial cells, neutrophil adhesion to endothelial cells and platelets under shear, and IL-8 production, key events of the acute inflammatory response. The underlying molecular mechanisms include interference with MAPK signaling pathways, modulation of the oxidative chemistry of superoxide, NO and ONOO-, inhibition of activation of NF-kappaB and AP-1, and consequently the expression of interleukin-8 and likely other pro-inflammatory genes. Collectively, these results add to the profile of LXA4/ATL rapid actions that contribute to "stop signaling" involved in regulating neutrophil functions during acute inflammation and suggest that aspirin inhibits neutrophil accumulation through triggering the synthesis of 15-epi-LXA4.  相似文献   

10.
Lipoxins (LX) are bioactive eicosanoids that can be formed during cell to cell interactions in human tissues to self limit key responses in host defense and promote resolution. Aspirin treatment initiates biosynthesis of carbon 15 epimeric LXs, and both series of epimers (LX and aspirin-triggered 15-epi-LX) display counter-regulatory actions with neutrophils. In this study, we report that synthetic lipoxin A(4) (LXA(4)) and 15-epi-LXA(4) (i.e., 15(R)-LXA(4) or aspirin-triggered LXA(4)) are essentially equipotent in inhibiting human polymorphonuclear leukocytes (PMN) in vitro chemotaxis in response to leukotriene B(4), with the maximum inhibition ( approximately 50% reduction) obtained at 1 nM LXA(4). At higher concentrations, 15-epi-LXA(4) proved more potent than LXA(4) as its corresponding carboxyl methyl ester. Also, exposure of PMN to LXA(4) and 15-epi-LXA(4) markedly decreased PMN transmigration across both human microvessel endothelial and epithelial cells, where 15-epi-LXA(4) was more active than LXA(4) at "stopping" migration across epithelial cells. Differences in potency existed between LXA(4) and 15-epi-LXA(4) as their carboxyl methyl esters appear to arise from cell type-specific conversion of their respective carboxyl methyl esters to their corresponding carboxylates as monitored by liquid chromatography tandem mass spectrometry. Both synthetic LXA(4) and 15-epi-LXA(4) as free acids activate recombinant human LXA(4) receptor (ALXR) to regulate gene expression, whereas the corresponding methyl ester of LXA(4) proved to be a partial ALXR antagonist and did not effectively regulate gene expression. These results demonstrate the potent stereospecific actions shared by LXA(4) and 15-epi-LXA(4) for activating human ALXR-regulated gene expression and their ability to inhibit human PMN migration during PMN vascular as well as mucosal cell to cell interactions.  相似文献   

11.
Most cystic fibrosis (CF) patients die of lung failure, due to the combined effects of bacterial infection, neutrophil-mediated inflammation, and airway obstruction by hyperviscous mucus. To this day, it remains unclear where and how this pathological vicious circle is initiated in vivo. In particular, it has proven difficult to investigate whether inflammatory pathways are dysregulated in CF airways independently of infection. Also, the relative involvement of large (tracheobronchial) vs. small (bronchiolar) airways in CF pathophysiology is still unclear. To help address these issues, we used an in vivo model based on the maturation of human fetal CF and non-CF small airways in severe combined immunodeficiency mice. We show that uninfected mature CF small airway grafts, but not matched non-CF controls, undergo time-dependent neutrophil-mediated inflammation, leading to progressive lung tissue destruction. This model of mature human small airways provides the first clear-cut evidence that, in CF, inflammation may arise at least partly from a primary defect in the regulation of neutrophil recruitment, independently of infection.  相似文献   

12.
Superoxide dismutase (SOD) is supposed to be an effective agent for neutrophil-mediated inflammation in the area of critical medicine. We investigated the involvement of SOD in the regulation of neutrophil apoptosis. Exogenously added SOD effectively induced neutrophil apoptosis, and the fluorescence patterns determined using annexin-V and the 7-AAD were similar to those seen in Fas-mediated neutrophil apoptosis. Neutrophils are short-lived leukocytes that need to be removed safely by apoptosis. The clearance of apoptotic neutrophils from sites of inflammation is a crucial determinant of the resolution of inflammation. Catalase inhibited the neutrophil apoptosis and caspase-3 activation. Spontaneous apoptosis, hydrogen peroxide and anti-Fas antibody-induced apoptosis of neutrophils were accelerated in Down's syndrome patients, in whom the SOD gene is overexpressed. Hydrogen peroxide was thought to be a possible major mediator of ROS-induced neutrophil apoptosis in caspase-dependent manner. Neutrophil apoptosis represents a crucial step in the mechanism governing the resolution of inflammation and has been suggested as a possible target for the control of neutrophil-mediated tissue injury. SOD may be a potential inhibitory mediator of neutrophil-mediated inflammation.  相似文献   

13.
Lipoxins (LX) are lipoxygenase-derived eicosanoids generated during inflammation. LX inhibit polymorphonuclear neutrophil (PMN) chemotaxis and adhesion and are putative braking signals for PMN-mediated tissue injury. In this study, we report that LXA4 promotes another important step in the resolution phase of inflammation, namely, phagocytosis of apoptotic PMN by monocyte-derived macrophages (Mphi). LXA4 triggered rapid, concentration-dependent uptake of apoptotic PMN. This bioactivity was shared by stable synthetic LXA4 analogues (picomolar concentrations) but not by other eicosanoids tested. LXA4-triggered phagocytosis did not provoke IL-8 or monocyte chemoattractant protein-1 release. LXA4-induced phagocytosis was attenuated by anti-CD36, alphavbeta3, and CD18 mAbs. LXA4-triggered PMN uptake was inhibited by pertussis toxin and by 8-bromo-cAMP and was mimicked by Rp-cAMP, a protein kinase A inhibitor. LXA4 attenuated PGE2-stimulated protein kinase A activation in Mphi. These results suggest that LXA4 is an endogenous stimulus for PMN clearance during inflammation and provide a novel rationale for using stable synthetic analogues as anti-inflammatory compounds in vivo.  相似文献   

14.
The macrophage plays a major role in the induction and resolution phases of inflammation; however, how lipid mediator-derived signals may modulate macrophage function in the resolution of inflammation driven by microbes (e.g., in inflammatory bowel disease) is not well understood. We examined the effects of aspirin-triggered lipoxin (ATL), a stable analog of lipoxin A(4), on the antimicrobial responses of human peripheral blood mononuclear cell-derived macrophages and the monocytic THP-1 cell line. Additionally, we assessed the expression and localization of the lipoxin receptor, formyl peptide receptor 2 (FPR2), in colonic mucosal biopsies from patients with Crohn's disease to determine whether the capacity for lipoxin signaling is altered in inflammatory bowel disease. We found that THP-1 cells treated with ATL (100 nM) displayed increased phagocytosis of inert fluorescent beads and Escherichia coli in a scavenger receptor- and PI3K-dependent, opsonization-independent manner. This ATL-induced increase in phagocytosis was also observed in primary human macrophages, where it was associated with an inhibition of E. coli-induced IL-1β and IL-8 production. Finally, we found that FPR2 gene expression was increased approximately sixfold in the colon of patients with Crohn's disease, a finding reproduced in vitro by the treatment of THP-1 cells with interferon-γ or lipopolysaccharide. These results suggest that lipoxin signaling is upregulated in inflammatory environments, and, in addition to their known role in tissue resolution following injury, lipoxins can enhance macrophage clearance of invading microbes.  相似文献   

15.
Lipoxins (LX) areeicosanoids generated via transcellular biosynthetic routes duringinflammation, hypersensitivity reaction, and after angioplasty. LXs aremodulators of leukocyte trafficking and vascular tone. Their influenceon the coagulation cascade has not been determined. In this study, weevaluated the influence of LXs on the expression of tissue factor (TF),a key regulator of coagulation. TF activity was measured in lysates ofmonocytes, human umbilical vein endothelial cells, and ECV304 cellsusing a one-stage clotting assay. LXA4 stimulated TFactivity in each cell type. The influence of LXA4 on TFactivity by ECV304 cells was studied further to explore the mechanismof induction of TF expression. LXA4-induced TF activity wasdose dependent, cycloheximide sensitive, and associated with increasedTF mRNA levels. Induction of TF activity was specific forLXA4 and was not observed with LXB4, the othermajor lipoxin generated by mammalian cells. Furthermore, ECV304 cell TFexpression was not influenced by15(R/S)-methyl-LXA4 or16-phenoxy-LXA4, synthetic analogs of LXA4 thatactivate the myeloid LXA4 receptor, and was not modulatedby SKF-104353, which blocks LXA4 bioactivities transducedthrough the putative shared LXA4/LTD4 receptor.LXA4-stimulated TF expression was blunted by pertussistoxin and by GF-109203X, an inhibitor of protein kinase C, and was notassociated with degradation of IB. Our results establish thatLXA4 induces TF activity via cell signaling pathways withdifferent structural and receptor requirements from those described forinhibition of leukocyte-endothelial cell interactions. They suggest arole for LXA4 as a modulator of TF-related vascular eventsduring inflammation and thrombosis.

  相似文献   

16.
M Romano  C N Serhan 《Biochemistry》1992,31(35):8269-8277
Human platelets convert leukocyte-derived leukotriene (LT) A4 to lipoxins during transcellular lipoxin biosynthesis. Here, we examined lipoxin generation in intact human platelets and compared it with that elicited from permeabilized platelets. Conversion of LTA4 to lipoxins by permeabilized cells exceeded (10-15 times) that to peptidoleukotrienes, while intact cells exposed to thrombin generated similar amounts of these two series (LT/LX). Permeabilized platelets also generated 3-5 times more lipoxins than intact cells. Lipoxin A4 (LXA4), lipoxin B4 (LXB4), and their respective all-trans isomers were identified by physical methods including HPLC and GC-MS. Chiral analysis of platelet-derived all-trans-containing LXs revealed that greater than 69.5 +/- 0.5% carried alcohol groups in the R configuration at carbons 6 and 14 (e.g., 11-trans-LXA4 and 8-trans-LXB4), respectively. More than 50% of these all-trans LX were formed by isomerization of native LXA4 and LXB4 during isolation. Lipoxin formation with permeabilized platelets gave an apparent Km of 8.9 microM and Vmax of 83.3 ng/(min-10(9) platelets) with maximal conversion in pH range 7-9. In addition, permeabilized platelets converted 14,15-LTA4 and LTA5, but not LTA3, to lipoxins. Consecutive exposure to LTA4 did not alter LXA4 generation but inhibited LXB4 by 40-50%, suggesting that LXB4 formation can be regulated by suicide inactivation. Unlike platelets, human endothelial cells did not convert LTA4 to lipoxins. These results indicate that lipoxin formation is a major route of LTA4 metabolism in thrombin-activated platelets and those that have undergone a loss of membrane barriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
New series of lipoxins isolated from human eosinophils   总被引:1,自引:0,他引:1  
D Steinhilber  H J Roth 《FEBS letters》1989,255(1):143-148
Granulocytes from human eosinophilic donors were incubated with arachidonic acid or 15-hydroxyeicosatetraenoic acid (15-HETE) and stimulated with the ionophore A23187. The eicosanoids were extracted with reversed-phase cartridges and subjected to RP-HPLC analysis. When extracts from eosinophil-enriched populations were analysed and compared with extracts from human neutrophils, three additional peaks were detected which coeluted with 15-hydroxy-delta 13-trans-15H derivatives of leukotriene C4, D4 and E4 in different HPLC systems. The recorded absorbance spectra of the eluted compounds and the standards were identical and showed a maximum at 307 nm which is characteristic for a conjugated tetraene system with a bathochromic shift by the sulfur moiety in alpha-position to the tetraene system. The compound which coeluted with the 15-hydroxy-LTC4 standard was treated with gamma-glutamyltransferase and converted to the corresponding leukotriene D4 derivative. The results indicate that interaction between the 5- and 15-lipoxygenase pathways leads to the formation of a new series of arachidonic acid metabolites in human eosinophils. Since the biosynthetic route is similar to that of lipoxin A4 and lipoxin B4, we suggest the trivial names lipoxin C4, D4 and E4.  相似文献   

18.
A new class of chemically and metabolically stable lipoxin analogs featuring a replacement of the tetraene unit of native LXA(4) with a substituted benzo-fused ring system have been designed and studied. These molecules were readily synthesized via a convergent synthetic route involving iterative palladium-mediated cross-coupling, and exhibit enhanced chemical stability, as well as resistance to metabolic inactivation via eicosanoid oxido-reductase. These new LX analogs were evaluated in a model of acute inflammation and were shown to exhibit potent anti-inflammatory properties, significantly decreasing neutrophil infiltration in vivo. The most potent among these was compound 9 (o-[9,12]-benzo-15-epi-LXA(4) methyl ester. Taken together, these findings help identify a new class of stable and easily prepared LX analogs that may serve as novel tools and as promising leads for new anti-inflammatory agents with improved therapeutic profile.  相似文献   

19.
Rainbow trout macrophages maintained in short term culture when incubated with either calcium ionophore, A23187, or opsonized zymosan synthesize a range of lipoxygenase products including lipoxins and leukotrienes. These cells are unusual in that they generate more lipoxin than leukotriene following such challenge. The main lipoxin synthesized was lipoxin (LX) A4. This compound was identified by cochromatography with authentic standard during reversephase high performance liquid chromatography, by ultra violet spectral analysis, radiolabeling following incorporation of [14C]arachidonic acid substrate into macrophage phospholipids, and gas chromatography electron impact mass spectrometry of the methyl ester, trimethylsilyl ether derivative. Other 4-series lipoxins synthesized by trout macrophages were identified as 11-trans-LXA4, 7-cis-11-trans-LXA4, and 6(S)-LXA4. These cells also produced 5-series lipoxins tentatively identified as LXA5, 11-trans-LXA5 and possibly 6(S)-LXA5. No LXB4 or LXB5 was, however, detected. The dynamics of leukotriene and lipoxin release were also determined. Lipoxin generation was slower than leukotriene generation the latter reaching a maximum after 30 min of exposure to ionophore (5 microM, 18 degrees C) compared with 45 min for the former.  相似文献   

20.
Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products--those that could be made biosynthetically--remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these "evolved" pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号