首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discrete waves, recorded from the ventral nerve photoreceptor, occur in the light and in the dark. Spontaneous waves, on the average, are smaller than light-evoked waves. This suggests that not all spontaneous waves can arise from spontaneous changes in the visual pigment molecule identical to changes induced by photon absorption. Spontaneous and light-evoked waves are statistically independent of each other. This is shown by determination of frequency of response as a function of pulse energy for short pulses and determination of the distribution of intervals between waves evoked by steady lights. The available data can be explained by two models. In the first each photon produces a time-dependent excitation that goes to zero the instant the wave occurs so that the number of effective absorptions from a short light pulse equals the number of waves produced by the light pulse. In the second the excitation produced by photon absorption is unaffected by the occurrence of the waves so that the number of waves produced from a short light pulse may be different from the number of effective absorptions. Present results do not allow a choice between the two models.  相似文献   

2.
Light Adaptation in the Ventral Photoreceptor of Limulus   总被引:4,自引:4,他引:0       下载免费PDF全文
Light adaptation in both the ventral photoreceptor and the lateral eye photoreceptor is a complex process consisting of at least two phases. One phase, which we call the rapid phase of adaptation, occurs whenever there is temporal overlap of the discrete waves that compose a light response. The recovery from the rapid phase of adaptation follows an exponential time-course with a time constant of approximately 75 ms at 21°C. The rapid phase of adaptation occurs at light intensities barely above discrete wave threshold as well as at substantially higher light intensities with the same recovery time-course at all intensities. It occurs in voltage-clamped and unclamped photoreceptors. The kinetics of the rapid phase of adaptation is closely correlated to the photocurrent which appears to initiate it after a short delay. The rapid phase of adaptation is probably identical to what is called the "adapting bump" process. At light intensities greater than about 10 times discrete wave threshold another phase of light adaptation occurs. It develops slowly over a period of ½ s or so, and decays even more slowly over a period of several seconds. It is graded with light intensity and occurs in both voltage-clamped and unclamped photoreceptors. We call this the slow phase of light adaptation.  相似文献   

3.
Light Adaptation of Discrete Waves in the Limulus Photoreceptor   总被引:3,自引:2,他引:1       下载免费PDF全文
Light adaptation affects discrete waves in two ways. It reduces their average size and decreases the probability that a photon incident at the cornea causes a discrete wave. There is no effect of light adaptation on the latency of discrete waves, or on their time-course.  相似文献   

4.
5.
Intracellular electrodes were inserted into single photoreceptor units of the excised lateral eye of Limulus, and preparations were selected from which graded receptor potentials of relatively large amplitude could be recorded in response to light stimuli. The experimental data indicated that the graded receptor potential does not arise solely from a collapse of the resting membrane potential of the sensory cells of the eye, since a reversal of polarity of the photoreceptor unit could be demonstrated when the eye was stimulated by light. In the recovery period following stimulation, characteristic changes in the so-called resting potential were recorded. It is suggested that these changes in the so-called resting membrane potential are electrical signs of recovery processes occurring in the photoreceptor, because the potential changes were recorded when the eye was in darkness and because the magnitudes of the potential changes were a predictable function of the intensity and duration parameters of the preceding light stimulus.  相似文献   

6.
Stochastic Properties of Discrete Waves of the Limulus Photoreceptor   总被引:7,自引:6,他引:1  
In the dark-adapted photoreceptor of the horseshoe crab, Limulus, transient discrete depolarizations of the cell membrane, discrete waves, occur in total darkness and their rate of occurrence is increased by illumination. The individual latencies of the discrete waves evoked by a light stimulus often cannot be resolved because the discrete waves overlap in time. The latency of the first discrete wave that follows a stimulus can be determined with reasonable accuracy. We propose a model which allows us to make an estimate of the distribution of the latencies of the individual light-evoked discrete waves, and to predict the latency distribution of the first discrete wave that follows a stimulus of arbitrary intensity-time course from the latency distribution of the first discrete wave that follows a brief flash of light. For low intensity stimuli, the predictions agree well with the observations. We define a response as the occurrence of one or more discrete waves following a stimulus. The distribution of the peak amplitudes of responses suggests that the peak amplitude of individual discrete waves sometimes has a bimodal distribution. The latencies of the two types of discrete waves, however, follow similar distributions. The area under the voltage-time curve of responses that follow equal energy long (1.25 sec) and short (10 msec) light stimuli follows similar distributions, and this suggests that discrete waves summate linearly.  相似文献   

7.
Fluctuations of the Impulse Rate in Limulus Eccentric Cells   总被引:3,自引:3,他引:0       下载免费PDF全文
Fluctuations in the discharge of impulses were studied in eccentric cells of the compound eye of the horseshoe crab, Limulus polyphemus. A theory is presented which accounts for the variability in the response of the eccentric cell to light. The main idea of this theory is that the source of randomness in the impulse rate is "noise" in the generator potential. Another essential aspect of the theory is that the process which transforms the generator potential "noise" into the impulse rate fluctuations may be treated as a linear filter. These ideas lead directly to Fourier analysis of the fluctuations. Experimental verification of theoretical predictions was obtained by calculation of the variance spectrum of the impulse rate. The variance spectrum of the impulse rate is shown to be the filtered variance spectrum of the generator potential.  相似文献   

8.
The dark-adapted current-voltage (I-V) curve of a ventral photoreceptor cell of Limulus, measured by a voltage-clamp technique, has a high slope-resistance region more negative than resting voltage, a lower slope-resistance region between resting voltage and zero, and a negative slope-resistance region more positive than 0 v. With illumination, we find no unique voltage at which there is no light-induced current. At the termination of illumination, the I-V curve changes quickly, then recovers very slowly to a dark-adapted configuration. The voltage-clamp currents during and after illumination can be interpreted to arise from two separate processes. One process (fast) changes quickly with change in illumination, has a reversal potential at +20 mv, and has an I-V curve with positive slope resistance at all voltages. These properties are consistent with a light-induced change in membrane conductance to sodium ions. The other process (slow) changes slowly with changes in illumination, generates light-activated current at +20 mv, and has an I-V curve with a large region of negative slope resistance. The mechanism of this process cannot as yet be identified.  相似文献   

9.
The Ventral Photoreceptor Cells of Limulus : I. The microanatomy   总被引:21,自引:17,他引:4  
The ventral photoreceptor cells of Limulus polyphemus resemble the retinular cells of the lateral eyes both in electrical behavior and in morphology. Because of the great size of the ventral photoreceptor cells they are easy to impale with glass capillary micropipettes. Their location along the length of the ventral eye nerve makes them easy to dissect out and fix for electron microscopy. Each cell has a large, ellipsoidal soma that tapers into an axon whose length depends upon the distance of the cell from the brain. The cell body contains a rich variety of cytoplasmic organelles with an especially abundant endoplasmic reticulum. The most prominent structural feature is the microvillous rhabdomere, a highly modified infolding of the plasmalemma. The microvilli are tightly packed together within the rhabdomere, and quintuple-layered junctions are encountered wherever microvillar membranes touch each other. Glial cells cover the surface of the photoreceptor cell and send long, sheet-like projections of their cytoplasm into the cell body of the photoreceptor cell. Some of these projections penetrate the rhabdomere deep within the cell and form quintuple-layered junctions with the microvilli. Junctions between glial cells and the photoreceptor cell and between adjacent glial cells are rarely encountered elsewhere, indicating that there is an open pathway between the intermicrovillous space and the extracellular medium. The axon has a normal morphology but it is electrically inexcitable.  相似文献   

10.
The ventral photoreceptors of Limulus polyphemus are unipolar cells with large, ellipsoidal somas located long both "lateral olfactory nerves." As a consequence of their size and location, the cells are easily impaled with microelectrodes. The cells have an average resting potential of -48 mv. The resting potential is a function of the external concentration of K. When the cell is illuminated, it gives rise to the typical "receptor potential" seen in most invertebrate photoreceptors which consists of a transient phase followed by a maintained phase of depolarization. The amplitude of the transient phase depends on both the state of adaptation of the cell and the intensity of the illumination, while the amplitude of the maintained phase depends only on the intensity of the illumination. The over-all size of the receptor potential depends on the external concentration of Na, e.g. in sodium-free seawater the receptor potential is markedly reduced, but not abolished. On the other hand lowering the Ca concentration produces a marked enhancement of both components of the response, but predominantly of the steady-state component. Slow potential fluctuations are seen in the dark-adapted cell when it is illuminated with a low intensity light. A spike-like regenerative process can be evoked by either the receptor potential or a current applied via a microelectrode. No evidence of impulse activity has been found in the axons of these cells. The ventral photoreceptor cell has many properties in common with a variety of retinular cells and therefore should serve as a convenient model of the primary receptor cell in many invertebrate eyes.  相似文献   

11.
In the dark, the ventral photoreceptor of Limulus exhibits time-variant currents under voltage-clamp conditions; that is, if the membrane potential of the cell is clamped to a depolarized value there is an initial large outward current which slowly declines to a steady level. The current-voltage relation of the cell in the dark is nonlinear. The only ion tested which has any effect on the current-voltage relation is potassium; high potassium shifts the reversal potential towards zero and introduces a negative slope-conductance region. When the cell is illuminated under voltage-clamp conditions, an additional current, the light-induced current, flows across the cell membrane. The time course of this current mimics the time course of the light response (receptor potential) in the unclamped cell; namely, an initial transient phase is followed by a steady-state phase. The amplitude of the peak transient current can be as large as 60 times the amplitude of the steady-state current, while in the unclamped cell the amplitude of the peak transient voltage never exceeds 4 times the amplitude of the steady-state voltage. The current-voltage relations of the additional light-induced current obtained for different instants of time are also nonlinear, but differ from the current-voltage relations of the dark current. The ions tested which have the greatest effect on the light-induced current are sodium and calcium; low sodium decreases the current, while low calcium increases the current. The data strongly support the hypothesis that two systems of electric current exist in the membrane. Thus the total ionic current which flows in the membrane is accounted for as the sum of a dark current and a light-induced current.  相似文献   

12.
The discrete, subthreshold, slow potential fluctuations (SPF's) which can be recorded intracellularly in Limulus ommatidia are sensitive to temperature and light wavelength. SPF frequency increases with increasing temperature (Q10 about 3.5) and light intensity. The effects are additive. SPF rise and decay time decrease with increasing temperature (Q10 between 2 and 3). There is a peak, near 520 nm, in the spectral sensitivity of SPF frequency. This peak may correspond to the wavelength of maximum absorption by rhodopsin in the ommatidia. Hydroxylamine produces a rapid, irreversible reduction of SPF frequency and amplitude perhaps owing to its action on the photopigment. The cornea and crystalline cones fluoresce (peak about 445 nm) when excited by near-ultraviolet energy (380 nm peak) and this fluorescence may influence SPF spectral sensitivity measurements. These findings suggest that the SPF's are the results of photolytic and thermolytic reactions occurring in the ommatidial visual pigments and that they have a role in the mechanisms which transduce light to electrical activity in the visual receptors.  相似文献   

13.
Discrete potential waves can be recorded from cells in the eye of Limulus both in darkness and in dim illumination. With constant illumination the frequency of these waves is linearly related to light intensity and the distribution of intervals between waves follows an exponential function. The latency of waves evoked by short flashes of light is usually long and variable and the number of waves evoked by a flash varies randomly, obeying approximately a Poisson distribution. The results of experiments with flashes of light have been compared with the predictions derived from the hypotheses that one, two, or three quanta of light are required for production of one wave. The agreement of the data with the theory can be considered acceptable for the "one quantum" hypothesis, is less satisfactory for the "two quanta" hypothesis, and is very poor for the "three quanta" hypothesis.  相似文献   

14.
15.
Recording of slow spontaneous fluctuations at rest using functional magnetic resonance imaging (fMRI) allows distinct long-range cortical networks to be identified. The neuronal basis of connectivity as assessed by resting-state fMRI still needs to be fully clarified, considering that these signals are an indirect measure of neuronal activity, reflecting slow local variations in de-oxyhaemoglobin concentration. Here, we combined fMRI with multifocal transcranial magnetic stimulation (TMS), a technique that allows the investigation of the causal neurophysiological interactions occurring in specific cortico-cortical connections. We investigated whether the physiological properties of parieto-frontal circuits mapped with short-latency multifocal TMS at rest may have some relationship with the resting-state fMRI measures of specific resting-state functional networks (RSNs). Results showed that the activity of fast cortico-cortical physiological interactions occurring in the millisecond range correlated selectively with the coupling of fMRI slow oscillations within the same cortical areas that form part of the dorsal attention network, i.e., the attention system believed to be involved in reorientation of attention. We conclude that resting-state fMRI ongoing slow fluctuations likely reflect the interaction of underlying physiological cortico-cortical connections.  相似文献   

16.
We have studied the properties of membrane patches excised from the transducing lobe of Limulus ventral photoreceptors. If patches are excised into an "internal" solution that resembles the ionic composition of the cytoplasm, channel activity is typically absent, but can be turned on by cyclic GMP (cGMP). In contrast, if patches are excised directly into sea water and subsequently examined in internal solution, they exhibit a high channel activity in the absence of any second messenger (spontaneous channel activity). Because these patches contained only light-dependent channels when examined before excision and because these spontaneous channels have properties in common with the light/cGMP-dependent channel, we believe that the spontaneously active channels represent light/cGMP-dependent channels that have been damaged by exposure to sea water, perhaps due to proteolysis activated by the high Ca2+ levels of the sea water. One type of the spontaneously active channel resembles the light/cGMP-dependent channel in open time, reversal potential, conductance states and voltage dependence. Application of micromolar Ca2+ to this channel produces a reversible decrease in the opening rate, indicating a high affinity binding site for Ca2+ on this channel. Another type of spontaneously active channel has a conductance state and reversal potential similar to the light/cGMP-dependent channel, but has apparently lost its dependence and sensitivity to Ca2+ and voltage.  相似文献   

17.

Background

During non-rapid eye movement (NREM) sleep synchronous neural oscillations between neural silence (down state) and neural activity (up state) occur. Sleep Slow Oscillations (SSOs) events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far.

Methodology/Principal Findings

We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings.

Conclusions/Significance

This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.  相似文献   

18.
The influence of changes in the ionic composition of the bathing medium on responses of the retinula cell of the honeybee drone to light was examined by means of intracellular microelectrodes. The resting potential of the cell was influenced mainly by the concentration of K. The peak of the receptor potential (the transient), which in a normal solution and with strong light approaches zero membrane potential, overshot this level in a K-rich solution. An increase in the concentration of K also raised the level of the steady-state phase of the receptor potential (the plateau). The amplitude of the receptor potential was decreased and the spike potential rapidly abolished when Na was replaced by either sucrose, choline, or Tris. In a Ca-free solution the amplitude of the response and especially that of the plateau, was increased. An increase in Ca had the opposite effects. All these changes were reversible. An attempt was made to interpret the receptor and spike potentials in terms of passive movements of Na and K across the membrane of the retinula cell. The major difficulty encountered was to find an explanation for the persistence of an appreciable fraction of the transient and the plateau in preparations kept up to 12 hr in a solution in which all the Na had been replaced by choline, Tris, or sucrose.  相似文献   

19.
应用细胞内生物电记录技术观察豚鼠腹腔神经节(CG)神经元自发快兴奋性突触后电位(f-EPSP)和动作电位(AP)的特征,分析其形成的可能机制。发现在豚鼠离体CG上存在自发f-EPSP和AP,发放频率不同。自发f-EPSP的幅度(5.67±2.66)mV(n=26),明显低于刺激内脏大神经诱发f-EPSP的幅度(13.26±6.74)mV(n=34,P<0.01),而自发的AP后超极化幅度(AHPA)(13.86±4.24)mV(n=30),明显高于刺激内脏大神经诱发的AHPA(8.99±2.79)mV(n=54,P<0.01)。六烃季铵或低Ca2 /高Mg2 Krebs液能完全阻断自发的AP,但自发的f-EPSP则不被完全阻断。结果提示豚鼠离体CG神经元有自发性电活动,这除与突触前膜ACh的随机释放有关以外,可能还有对Ca2 不敏感的其他递质介导。  相似文献   

20.
The late receptor potential (LRP) recorded in barnacle photoreceptor cells exhibits, at high light levels, a strong dependence on the color of the stimulus and of the preceding adaptation. Most strikingly, red illumination of a cell previously adapted to blue light results in a depolarization which may last for up to 30 min after the light goes off, while blue illumination of a cell previously adapted to red light cuts short this extended depolarization or prevents its induction by a closely following red light. Comparison of the action spectra for the stimulus-coincident LRP and for the extended depolarization and its curtailment with those previously measured for the early receptor potential (ERP) confirms that these phenomena derive from the same bi-stable pigment as the ERP. The stimulus-coincident response and the extended depolarization appear to arise from substantial activation of the stable 532 nm state of the pigment, while activation of the stable 495 state depresses or prevents the extended depolarization and probably also depresses the stimulus-coincident response. Since either process can precede the other, with mutually antagonistic effects, one is not simply the reversal of the other; they must be based on separate mechanisms. Furthermore, comparison with ERP kinetics shows that both processes involve mechanisms additional to the pigment changes, as seen in the ERP. A model is proposed and discussed for the LRP phenomena and their dependences on wavelength, intensity, and duration of illumination based on excitor-inhibitor interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号