共查询到20条相似文献,搜索用时 0 毫秒
1.
Markerless analysis of front crawl swimming 总被引:3,自引:0,他引:3
Ceseracciu E Sawacha Z Fantozzi S Cortesi M Gatta G Corazza S Cobelli C 《Journal of biomechanics》2011,44(12):2236-2242
Research on motion analysis of swimmers is commonly based on video recordings of the subject's motion, which are analyzed by manual digitization of feature points by an operator. This procedure has two main drawbacks: it is time-consuming, and it is affected by low repeatability. Therefore, the application of video-based, automatic approaches to motion analysis was investigated. A video-based, markerless system for the analysis of arm movements during front crawl swimming was developed. The method proposed by Corazza et al. (2010) was modified in order to be used into water environment. Three dimensional coordinates of shoulder, elbow and wrist joints centers of 5 sprint swimmers performing front crawl swimming were determined. Wrist joint velocity was also calculated. Accuracy and reliability of the proposed technique were evaluated by means of comparison with traditional manual digitization (SIMI Reality Motion Systems GmbH). Root mean square distance (RMSD) values between trajectories estimated with the two techniques were determined. Results show good accuracy for wrist joint (RMSD<56mm), and reliability, evaluated on one subject, comparable to the inter-operator variability associated with the manual digitization procedure. The proposed technique is therefore very promising for quantitative, wide-scale studies on swimmers' motion. 相似文献
2.
An estimation of drag in front crawl swimming 总被引:3,自引:0,他引:3
A J van der Vaart H H Savelberg G de Groot A P Hollander H M Toussaint G J van Ingen Schenau 《Journal of biomechanics》1987,20(5):543-546
Propulsive arm forces of twelve elite male swimmers during a front crawl swimming-like activity were measured. The swimmers pushed off against grips which are attached to a 23 m tube at 0.8 m under the water surface. The tube was fixed to a force transducer. Since at constant speed, mean propulsive force equals mean drag force this method also provides the mean active drag on a moving swimmer. The mean propulsive force at a speed of v = 1.48 m s-1 appeared to be 53.2 +/- 5.8 N which is two to three times smaller than what is reported by other authors for active drag but which is in agreement with values reported for passive drag on a (towed) swimmer who is not moving. Discrepancies with indirect active drag measurements are discussed. 相似文献
3.
The measurement of drag while swimming (i.e. active drag) is a controversial issue. Therefore, in a group of six elite swimmers two active drag measurement methods were compared to assess whether both measure the same retarding force during swimming. In method 1 push-off forces are measured directly using the system to measure active drag (MAD-system). In method 2 (the velocity perturbation method, VPM) drag is estimated from the difference in swimming speed when subjects swim twice at maximal effort (assuming equal power output and assuming a quadratic drag-speed relationship): once swimming free, and once swimming with a hydrodynamic body attached that created a known additional resistance. The average drag for the VPM tests (53.2 N) was statistically significant and different from the active drag for the MAD-test (66.9 N), paired Student's t-test: 2.484, 12 DF, p=0.029. A post hoc analysis was performed to assess whether the two methods measure a different phenomenon. Based on the drag speed curve obtained with the MAD-system, the VPM-data were re-examined. For diverging drag determinations the assumption of equal power output of the 'free' trial (swimming free) vs. the towing trial (swimming with hydrodynamic buoy) appeared to be violated. The regression of the relative difference in force (MAD vs. VPM) on the relative difference in power (swimming free vs. swimming with hydrodynamic body) was: %Deltadrag=1.898 x %Deltapower -4.498, r2=0.88. This suggests that the major part of the difference in active drag values is due to a non-equal power output in the 'free' relative towing trial during the VPM-test. The simulation of the violation of the equal power output assumption and the calculation of the effect of an other than quadratic drag-speed relationship corroborated the tentative conclusion that both methods measure essentially the same phenomenon and that active drag differences can be explained by a violation of test assumptions. 相似文献
4.
Jessy Lauer Pedro Figueiredo João Paulo Vilas-Boas Ricardo J. Fernandes Annie Hélène Rouard 《Journal of electromyography and kinesiology》2013,23(4):820-825
Propulsion in swimming is achieved by complex sculling movements with elbow quasi-fixed on the antero-posterior axis to transmit forces from the hand and the forearm to the body. The purpose of this study was to investigate how elbow muscle coactivation was influenced by the front crawl stroke phases. Ten international level male swimmers performed a 200-m front crawl race-pace bout. Sagittal views were digitized frame by frame to determine the stroke phases (aquatic elbow flexion and extension, aerial elbow flexion and extension). Surface electromyograms (EMG) of the right biceps brachii and triceps brachii were recorded and processed using the integrated EMG to calculate a coactivation index (CI) for each phase. A significant effect of the phases on the CI was revealed with highest levels of coactivation during the aquatic elbow flexion and the aerial elbow extension. Swimmers stabilize the elbow joint to overcome drag during the aquatic phase, and act as a brake at the end of the recovery to replace the arm for the next stroke. The CI can provide insight into the magnitude of mechanical constraints supported by a given joint, in particular during a complex movement. 相似文献
5.
The purpose of this study was to establish the rhythm characteristics of skilled front crawl swimmers using a six-beat kick. These included the amplitudes of the first three Fourier harmonics (H1, H2, H3) and their percent contributions to power contained in the angular displacement signals of the shoulders, hips, knees, and ankles with respect to the longitudinal axis in line with the swimming direction. Three-dimensional video data of seven national/international level swimmers were collected during simulated 200 m front crawl races in which swimmers maintained six-beat kicking patterns. Swimmers differed in all variables but had small variability across the four 50 m laps. Modest changes occurred during the 200 m, with the exception of shoulder roll, which remained constant and was represented almost entirely by a single sinusoid (H1). Changes across laps reached significance for swimming speed, stroke rate, hip roll, and H3 wave velocity between the knee and ankle. A H3 body wave of moderate and increasing velocity travelled caudally from hip to ankle. In the light of existing knowledge of aquatic locomotion this was compatible with the goal of generating propulsion in an efficient manner. 相似文献
6.
The effects of breathing on body roll have been previously investigated for the roll of the whole trunk only. The purposes of this study were: to calculate separately the shoulder roll (SR) and hip roll (HR) of swimmers during front crawl for non-breathing and preferred-side breathing conditions; to assess the differences in the magnitude and temporal characteristics of these variables between non-breathing and preferred-side breathing conditions; and to examine their association with swimming performance (indicated by swimming speed). Twelve male swimmers who competed at national and international level performed two maximum 25 m front crawl trials: one non-breathing and one with breathing to their preferred side. Performance was recorded with four below and two above water synchronised cameras. SR and HR in both trials were calculated for the breathing and non-breathing sides. The timings of SR and HR peaks to each side and at the positions of neutral roll were also calculated. Swimming speed was significantly slower in the breathing trial (p < 0.01). Swimmers rolled their shoulders and hips to the breathing side significantly more in the breathing than in the non-breathing trial (SR: p < 0.01; HR: p = 0.03). Nevertheless, there were no significant differences in the overall SR or HR between these trials. In the breathing trial, SR was higher in the breathing than in the non-breathing side (p < 0.01) but HR was not significantly different (p = 0.07). There was no evidence to suggest that temporal characteristics of SR or HR were associated with swimming performance. 相似文献
7.
Seifert L Chehensse A Tourny-Chollet C Lemaitre F Chollet D 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(5):1670-1676
This study analyzed the relationship between breathing pattern and arm coordination symmetry in 11 expert male swimmers who performed the front crawl at their 100-m race pace using seven randomized breathing patterns. Two indexes of coordination (IdCP and IdCNP) and a symmetry index (SI) based on the difference of IdCP - IdCNP were calculated. IdCP calculated the lag time between the beginning of arm propulsion on the nonpreferential breathing side and the end of arm propulsion on the preferential breathing side; IdCNP did the converse. The IdCP and IdCNP comparisons and the SI showed coordination asymmetries among the seven breathing patterns. Specifically, breathing to the preferential side led to an asymmetry, in contrast to the other breathing patterns, and the asymmetry was even greater when the swimmer breathed to his nonpreferential side. These findings highlight the effect of breathing laterality in that coordination was symmetric in patterns with breathing that was bilateral, axed (as in breathing with a frontal snorkel), or removed (as in apnea). One practical application is that arm coordination asymmetry can be prevented or reduced by using breathing patterns that balance the coordination. 相似文献
8.
Effect of velocity and added resistance on selected coordination and force parameters in front crawl
Schnitzler C Brazier T Button C Seifert L Chollet D 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(10):2681-2690
The effect of (a) increasing velocity and (b) added resistance was examined on the stroke (stroke length, stroke rate [SR]), coordination (index of coordination [IdC], propulsive phases), and force (impulse and peaks) parameters of 7 national-level front crawl swimmers (17.14 ± 2.73 years of swimming; 57.67 ± 1.62 seconds in the 100-m freestyle). The additional resistance was provided by a specially designed parachute. Parachute swimming (PA) and free-swimming (F) conditions were compared at 5 velocities per condition. Video footage was used to calculate the stroke and coordination parameters, and sensors allowed the determination of force parameters. The results showed that (a) an increase in velocity (V) led to increases in SR, IdC, propulsive phase duration, and peak propulsive force (p < 0.05), but no significant change in force impulse per cycle, whatever the condition (PA or F); and (b) in PA conditions, significant increases in the IdC, propulsive phase duration, and force impulse and a decrease in SR were recorded at high velocities (p < 0.05). These results indicated that, in the F condition, swimmers adapted to the change in velocity by modifying stroke and coordination rather than force parameters, whereas the PA condition enhanced the continuity of propulsive action and force development. Added resistance, that is, "parachute training," can be used for specific strength training purposes as long as swimming is performed near maximum velocity. 相似文献
9.
Determining the efficiency of a swimming stroke is difficult because different "efficiencies" can be computed based on the partitioning of mechanical power output (W) into its useful and nonuseful components, as well as because of the difficulties in measuring the forces that a swimmer can exert in water. In this paper, overall efficiency (η(O) = W(TOT)/?, where W(TOT) is total mechanical power output, and ? is overall metabolic power input) was calculated in 10 swimmers by means of a laboratory-based whole-body swimming ergometer, whereas propelling efficiency (η(P) = W(D)/W(TOT), where W(D) is the power to overcome drag) was estimated based on these values and on values of drag efficiency (η(D) = W(D)/?): η(P) = η(D)/η(O). The values of η(D) reported in the literature range from 0.03 to 0.09 (based on data for passive and active drag, respectively). η(O) was 0.28 ± 0.01, and η(P) was estimated to range from ~0.10 (η(D) = 0.03) to 0.35 (η(D) = 0.09). Even if there are obvious limitations to exact simulation of the whole swimming stroke within the laboratory, these calculations suggest that the data reported in the literature for η(O) are probably underestimated, because not all components of W(TOT) can be measured accurately in this environment. Similarly, our estimations of η(P) suggest that the data reported in the literature are probably overestimated. 相似文献
10.
Currently, it is thought that inhalational anesthetics cause anesthesia by binding to ligand-gated ion channels. This is being investigated using four-alpha-helix bundles, small water-soluble analogues of the transmembrane domains of the "natural" receptor proteins. The study presented here specifically investigates how multiple alanine-to-valine substitutions (which each decrease the volume of the internal binding cavity by 38 A(3)) affect structure, stability, and anesthetic binding affinity of the four-alpha-helix bundles. Structure remains essentially unchanged when up to four alanine residues are changed to valine. However, stability increases as the number of these substitutions is increased. Anesthetic binding affinities are also affected. Halothane binds to the four-alpha-helix bundle variants with 0, 1, and 2 substitutions with equivalent affinities but binds to the variants with 3 and 4 more tightly. The same order of binding affinities was observed for chloroform, although for a particular variant, chloroform was bound less tightly. The observed differences in binding affinities may be explained in terms of a modulation of van der Waals and hydrophobic interactions between ligand and receptor. These, in turn, could result from increased four-alpha-helix bundle binding cavity hydrophobicity, a decrease in cavity size, or improved ligand/receptor shape complementarity. 相似文献
11.
P W Webb 《The Journal of experimental biology》1971,55(2):521-540
12.
Sharon M. Swartz 《International journal of primatology》1989,10(5):387-418
Because brachiating locomotion is characterized by a pattern of swinging movements, brachiation has often been analogized
to pendular motion, and aspects of the mechanics of pendular systems have been used to provide insight into both energetic
and structural design aspects of this locomotor mode. However, there are several limitations to this approach. First, the
motions of brachiating animals only approximate pendular motion, and therefore the energetics of these two systems are only
roughly comparable. Second, the kinematic similarity between brachiation and pendular motion will be maximal at only one velocity,
and the correspondence will be even less at greater or lesser speeds. Third, all forms of terrestrial locomotion that involve
the use of limbs incorporate elements of pendular systems, and therefore brachiation is not unusual in this respect. Finally,
it has been suggested that the mechanics of pendular motion will constrain the maximum attainable body size of brachiating
animals and that this mechanical situation explains the lack of brachiating primates of greater than 30-kg body size; the
present analysis provides evidence that the constraints on body size are far less strict than previously indicated and that
extrinsic factors such as the geometry of the forest environment are more likely to dictate maximum body size for brachiators. 相似文献
13.
14.
Synopsis The relationship between respiration and swimming speed of larvae and juveniles (2–100 mg fresh mass) of Danube bleak, Chalcalburnus chalcoides (Cyprinidae), was measured at 15° and 20° C under hypoxic (50% air saturation), normoxic, and hyperoxic (140% air saturation) conditions. In a flow-tunnel equipped with a flow-through respirometer the animals swam at speeds of up to 8 lengths · s-1; speeds were sustained for at least two minutes. The mass specific standard, routine, and active respiration rates declined with increasing body mass at both temperatures. Metabolic intensity increased with temperature, but also the critical swimming speed (at which oxygen uptake reached its maximum) was higher at 20° than at 15° C by about 30%. Nevertheless, the oxygen debt incurred by the fish at the highest speeds was about 40%, and the net cost of swimming about 32%, lower at 20° than at 15°C. The standard metabolic rate was more strongly dependent on temperature (Q10 around 2.5) than the maximum active rate (Q10 below 2). Whereas standard and routine respiration rates were well regulated over the pO2-range investigated (8.5–25.8 kPa), the active rates showed a conformer-like pattern, resulting in factorial scopes for activity between 2 and 4. Under hypoxia, the critical swimming speed was lower than under normoxia by about 1.51 · s-1, but the net cost of swimming was also lower by about 30%. On the other hand, hyperoxia neither increased the swimming performance nor did it lead to a further increase of the metabolic cost of swimming. The hypoxia experiments suggest that in response to lowered tensions of ambient oxygen maintenance functions of metabolism not directly related to swimming may be temporarily reduced, leading to increased apparent swimming efficiency under these conditions. The responses of the larvae of Danube bleak to low temperature and low ambient oxygen are discussed in terms of the metabolic strategies by which energy-limited animals meet the challenge of environmental deterioration. 相似文献
15.
Alan Y. K. Wong Ph.D. 《Bulletin of mathematical biology》1973,35(3):375-399
Based on A. V. Hill's three-component model, mechanical properties of the contractile element (CE), such as velocity and tension, were determined as muscle shortening and loads in quick-release or afterloaded isotonic contraction. The method is applicable for studying cardiac mechanics, to obtain force-velocity data of the same CE length at varous afterloads. Analysis of the energetics of cardiac muscle was based on simulation studies of cardiac mechanics (Wong 1971, 1972). By proper derivation, the conventional contractile element work (CEW) was found to be a minor energy determinant. The tension-time integral and tension-independent heat (Ricchiuti and Gibbs, 1965) represent energy utilization for activation and maintenance of tension, the primary energy determinant. 相似文献
16.
Bentley DJ Phillips G McNaughton LR Batterham AM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2002,16(1):97-102
The purpose of this investigation was to compare the blood lactate concentration ([La]), stroke distance (D(s)), and swim index (SI) during an incremental swim test (IST) in elite swimmers who had a loss in mobility (LM) (n = 6) or who had full mobility (FM) (n = 5) of the lower limbs. The IST consisted of 5 repeats of either 100 or 200 m front crawl depending upon the ability level of the swimmer. The [La] and heart rate measured during the IST showed no significant differences (p > 0.05). However, velocity (V(s)) and D(s) were all significantly lower (p < 0.01) during the IST. SI was significantly (p < 0.01) lower during repeats 1 to 3 and 5, but not repeat 4. These data indicate that the [La] response to incremental exercise is similar during incremental front crawl activity in swimmers suffering from loss of lower limb mobility. However, a critical V(s) is reached in LM swimmers where swimming efficiency is optimal compared with FM swimmers. 相似文献
17.
A mechanistic model describing the mechanics and energetics of nectar-feeding in butterflies is developed. The butterflies Collas eurytheme and Danaus plexippus are used to illustrate the model. Simulation results indicate that there are mechanical limitations upon the range of nectar sugar concentrations and nectar extraction times available to butterflies. There is a unique optimum for net rate of energy gain at 20–25% nectar sugar concentration which is independent of the metabolic rate and of proboscis shape and size over the ranges found in butterflies. The optimal nectar extraction rate depends upon the size and shape of the proboscis. These results are discussed in relation to the design of nectar feeding structures, optimal foraging strategy, and the evolution of insect pollination. 相似文献
18.
3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers 总被引:1,自引:0,他引:1
The aim of this study was to identify kinematic and dynamic variables related to the best tumble turn times (3mRTT, the turn time from 3-m in to 3-m out, independent variable) in ten elite male swimmers using a three-dimensional (3D) underwater analysis protocol and the Lasso (least absolute shrinkage and selection operator) as statistical method. For each swimmer, the best-time turn was analyzed with five stationary and synchronized underwater cameras. The 3D reconstruction was performed using the Direct Linear Transformation algorithm. An underwater piezoelectric 3D force platform completed the set-up to compute dynamic variables. Data were smoothed by the Savitzky-Golay filtering method. Three variables were considered relevant in the best Lasso model (3mRTT=2.58-0.425 RD+0.204 VPe+0.0046 TD): the head-wall distance where rotation starts (RD), the horizontal speed at the force peak (VPe), and the 3D length of the path covered during the turn (TD). Furthermore, bivariate analysis showed that upper body (CUBei) and lower limb extension indexes at first contact (CLLei) were also linked to the turn time (r=-0.65 and p<0.05 for both variables). Thus the best turn times were associated with a long RD, slower VPe and reduced TD. By an early transverse rotation, male elite swimmers reach the wall with a slightly flexed posture that results in fast extension. These swimmers opt for a movement that is oriented forward and they focus on reducing the distance covered. 相似文献
19.
Effect of surface tension and surfactant administration on Eustachian tube mechanics. 总被引:3,自引:0,他引:3
Development of otitis media has been related to abnormal Eustachian tube (ET) mechanics. ET is a collapsible tube that is periodically opened to regulate middle ear pressure and to clear middle ear fluid into the nasopharynx. The ability to perform these physiological functions depends on several mechanical properties, including the ET's opening pressure (P(open)), compliance (ETC), and hysteresis (eta). In this study, a previously developed modified force-response protocol was used to determine ET mechanical properties after experimental manipulation of the mucosal surface condition. Specifically, these properties were measured in the right ear of six cynomologous monkeys under baseline conditions after "washing out" the normal ET mucous layer and after instillation of a pulmonary surfactant, Infasurf. Removal of the normal mucosa did not significantly alter P(open) but did result in a decrease in ETC and eta (P < 0.05). Treatment of the mucosa with Infasurf was effective in reducing P(open) and increasing both ETC and eta to baseline values (P < 0.05). These results indicate that the mucosa-air surface tension can affect the overall ETC and eta properties of the ET. In addition, this study indicates that surfactant therapy may only be beneficial in patients with rigid or inelastic ETs (large P(open) and low ETC and eta). 相似文献
20.
Karsai I Garrido N Louro H Leitão L Magyar F Alves F Silva A 《Acta physiologica Hungarica》2010,97(4):385-392
This study analyzed the relationship between mechanical force production and spatial arm position of the swimming movement for each side of the swimmer. Eight internationally recognized male swimmers performed fix positioned arm only swimming with a dynamometer synchronized with underwater cameras. The upper arm positions (α in side, β in frontal view) and the elbow angles (γ in 3D) were determined at the moment where the force production reached the peak (Fmax) and the maximal values of rate of force development (RFDmax). RFDmax and α values showed significant differences between the sides (P<0.05). To show the motion integration structure of the performance, Multiple Regression Analysis (MRA) was employed separately for both sides. For the criterion variable, the impulse of force (ImpF50%) was calculated. The defined parameters as the mechanical and spatial predictor system were used for the model. The results of the MRA showed that the predictor system yielded the model structure of the variables that explain the criterion variables for ImpF50% by the dominant (P=0.007) and by the nondominant side (P=0.001), respectively. The alternate contribution of the variables to the models can objectively express the performance difference between the two sides of the swimmer. 相似文献