首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The osmotic reflection coefficient (sigma) for total plasma proteins was estimated in 11 isolated blood-perfused canine lungs. Sigma's were determined by first measuring the capillary filtration coefficient (Kf,C in ml X min-1 X 100g-1 X cmH2O-1) using increased hydrostatic pressures and time 0 extrapolation of the slope of the weight gain curve. Kf,C averaged 0.19 +/- 0.05 (mean +/- SD) for 14 separate determinations in the 11 lungs. Following a Kf,C determination, the isogravimetric capillary pressure (Pc,i) was determined and averaged 9.9 +/- 0.5 cmH2O for all controls reported in this study. Then the blood colloids in the perfusate were either diluted or concentrated. The lung either gained or lost weight, respectively, and an initial slope of the weight gain curve (delta W/delta t)0 was estimated. The change in plasma protein colloid osmotic pressure (delta IIP) was measured using a membrane osmometer. The measured delta IIP was related to the effective colloid osmotic pressure (delta IIM) by delta IIM = (delta W/delta t)0/Kf,C = sigma delta IIP. Using this relationship, sigma averaged 0.65 +/- 0.06, and the least-squares linear regression equation relating Pc,i and the measured IIP was Pc,i = -3.1 + 0.67 IIP. The mean estimate of sigma (0.65) for total plasma proteins is similar to that reported for dog lung using lymphatic protein flux analyses, although lower than estimates made in skeletal muscle using the present methods (approximately 0.95).  相似文献   

2.
Venous occlusion capillary pressures (Pcv) were simultaneously compared with isogravimetric capillary pressures (PcI) in the same isolated perfused dog lung preparations. For 26 determinations, PcI averaged 1.23 +/- 0.22 (SE) mmHg higher than Pcv. However, the two measurements of capillary pressure were highly correlated (r = 0.99), and the following regression equation was obtained: Pcv = 1.12 PcI - 2.1. Pcv could be easily measured several times in the same preparation, either by total venous occlusion or regional venous occlusion using a Swan-Ganz balloon catheter. In addition, Pcv did not require an isogravimetric state for its determination. These data suggest that the major sites of filtration and vascular capacitance in the pulmonary circulation reside in the microvessels and that the more easily determined Pcv is an adequate measure of the average capillary filtration pressure in the lungs.  相似文献   

3.
Paraquat (PQ; 1,1'-dimethyl-4,4'-bipyridylium dichloride), a widely used herbicide, causes pulmonary edema by a cyclic oxidation and reduction reaction with oxygen molecules with the production of oxygen free radicals. Because fructose 1,6-diphosphate (FDP) has recently been shown to inhibit the generation of oxygen free radicals by activated neutrophils, we determined the effects of FDP on PQ-induced increase in microvascular permeability in isolated blood-perfused dog lungs. Vascular permeability was assessed using the capillary filtration coefficient (Kf,c) and isogravimetric capillary pressure (Pc,i). There was no change in these variables over 5 h in the control lungs treated with saline (n = 5). A significant increase in Kf,c and a decrease in Pc,i, both of which indicated increased vascular permeability, were observed at 5 h of perfusion with 4 x 10(-3) M PQ (n = 5). Unexpectedly, an increase in microvascular permeability occurred within 4 h after administration of PQ in the lungs that were pretreated with FDP (2.7-14.2 mM, n = 6). Moreover the increases of Kf,c in the FDP-pretreated lungs were significantly greater than those in the lungs treated with PQ alone. Also, the final-to-initial lung weight ratio of the FDP-pretreated group was greater than those of the other groups. Thus the FDP dose used in the present study accentuated rather than prevented the PQ lung injury.  相似文献   

4.
Oleic acid causes pulmonary edema by increasing capillary endothelial permeability, although the mechanism of this action is uncertain. We tested the hypothesis that the damage is an oxidant injury initiated by oleic acid, using isolated blood-perfused canine lung lobes. The lobes were dilated with papaverine and perfused in zone III with a constant airway pressure of 3 cmH2O. Changes in isogravimetric capillary pressure (Pc,i) and capillary filtration coefficient (Kf,C) were used as indices of alterations in microvascular permeability in lungs treated with silicone fluid (n = 3), oleic acid (n = 11), oleic acid after pretreatment with the antioxidants promethazine HCl (n = 11) or N,N'-diphenyl-p-phenylenediamine (DPPD; n = 4), or oleic acid following pretreatment with methylprednisolone (n = 4). Kf,C averaged 0.21 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1 in control and increased to 0.55 +/- 0.05 and 0.47 +/- 0.05 when measured 20 and 180 min after the administration of oleic acid. When oleic acid was infused into lungs pretreated with promethazine, Kf,C increased to only 0.38 +/- 0.05 ml X min-1 X cmH2O-1 X 100 g-1 after 20 min and had returned to control levels by 180 min. Pretreatment with DPPD, but not methylprednisolone, similarly attenuated the increase in Kf,C following oleic acid. Silicone fluid had no effect on Kf,C. That oleic acid increases vascular permeability was also evidenced by a fall (P less than 0.05) in Pc,i from control when measured at 180 min in every group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

6.
The canine lung lobe was embolized with 100-micron glass beads before lobectomy and blood anticoagulation. The lobe was isolated, ventilated, and pump-perfused with blood at an arterial pressure (Pa) of about 50 (high pressure, HP, n = 9) or 25 Torr (low pressure, LP, n = 9). Rus/PVR, the ratio of upstream (Rus) to total lobar vascular resistance (PVR), was determined by venous occlusion and the isogravimetric capillary pressure technique. The capillary filtration coefficient (Kf), an index of vascular permeability, was obtained from rate of lobe weight gain during stepwise capillary pressure (Pc) elevation. The embolized lobes became more edematous than nonembolized controls, (C, n = 11), (P less than 0.05), with Kf values of 0.20 +/- 0.04, 0.25 +/- 0.06, and 0.07 +/- 0.01 ml X min-1 X Torr-1 X 100 X g-1 in LP, HP, and C, respectively (P less than 0.05). The greater Rus/PVR in embolized lobes (P less than 0.05) protected the microvessels and, although Pc was greater in HP than in controls (P less than 0.05), Pc did not differ between HP and LP (P greater than 0.05). Although indexes of permeability did not differ between embolized groups (P greater than 0.05), HP became more edematous than LP (P less than 0.05). The greater edema in HP did not appear due to a greater imbalance of Starling forces across the microvessel wall or to vascular recruitment. At constant Pc and venous pressure, elevating Pa from 25 to 50 Torr in embolized lobes resulted in greater edema to suggest fluid filtration from precapillary vessels.  相似文献   

7.
We determined the effects of paraquat (PQ) concentrations ranging from 10(-3) to 10(-2) M and three levels of venous PO2 [hypoxia (41 +/- 3 Torr), normoxia (147 +/- 8 Torr), and hyperoxia (444 +/- 17 Torr)] in the presence of 4 x 10(-3) M PQ on microvascular permeability in isolated blood-perfused dog lungs. Capillary filtration coefficient (Kf,c) increased and isogravimetric capillary pressure (Pc,i) decreased 3 h after perfusion with 10(-2) M PQ (n = 7) and 5 h after perfusion with 4 x 10(-3) M PQ (n = 6) but not with 10(-3) M PQ (n = 4). In hyperoxic lungs perfused with 4 x 10(-3) M PQ, Kf,c increased to nine times the base-line value 5 h after PQ [0.15 +/- 0.01 to 1.35 +/- 0.25 (SE) ml.min-1.cmH2O-1.100 g-1]. Pc,i significantly decreased from a base-line value of 9.4 +/- 0.2 to 7.1 +/- 0.4 cmH2O at 3 h. In hypoxic lungs perfused with 4 x 10(-3) M PQ (n = 5), Pc,i and Kf,c changes were not significantly different from those in normoxic lungs treated with PQ. Thus both hyperoxia and an increased dose of PQ shortened the latent period and increased the severity of the PQ-induced microvascular permeability lesion, but hypoxia failed to prevent the PQ damage.  相似文献   

8.
Segmental vascular resistances and compliances in dog lung   总被引:1,自引:0,他引:1  
The segmental distribution of vascular resistances and compliances were evaluated in isolated blood perfused lung lobes using arterial, venous, and double-occlusion pressures and were compared with filtration midpoint capillary pressures (Pc,f). We separated total vascular resistance (RT) and compliance (CT) into large artery (Ra, Ca), large vein (Rv, Cv), and microvascular compartments (Rmc, Cmc) at base-line and increased vascular pressures and during infusions of histamine, serotonin, and norepinephrine. In control lobes, double-occlusion pressure (Pdo) closely approximated Pc,f at all vascular pressures. Pre- and postcapillary resistance were approximately equal when referenced to either Pc,f or Pdo. Although Rmc comprised 42% of RT and Cmc constituted 76% of CT, a twofold increase in base-line Pc,f caused RT to decrease to 67% and Rmc/RT to 29% of control values, whereas CT decreased to 87% and Cmc/CT decreased to 88% of control values over the same Pc,f range. Mean static CT was 2.25 +/- 0.09 ml X cmH2O-1. 100 g-1, whereas dynamic CT was 1.54 +/- 0.08 ml X cmH2O-1. 100 g-1, or only 68% of static vascular compliance. Drug infusions increased mean RT from 4.2- to 5.3-fold and significantly decreased both static and dynamic CT. Although all vascular segments were constricted, histamine affected primarily large veins, serotonin increased Ra greater than Rv, and norepinephrine constricted upstream and downstream vessels about equally. Increased Pc,f in the presence of these drugs decreased RT significantly in every case primarily through attenuation of the drug vasoconstrictor effect on Rmc and decreased CT primarily due to a decrease in Cmc, but increased Cmc/(Ca + Cv). Thus the microvascular compartment appears to be the major site of both fluid filtration and vascular compliance and contributes significantly to total vascular resistance. Drug infusions constricted large and small vessel compartments as defined here, but increased Pc,f attenuated microvascular vasoconstriction and to a lesser extent large vessel vasoconstriction resulting in a reduced microvascular resistance in both drug-treated and control lobes. This effect can be attributed to recruitment and/or distension of microvessels and distension of larger vessels.  相似文献   

9.
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular resistance (RT) as well as pre- (Ra) and post- (Rv) capillary resistances could be calculated. In both CP and CF perfused lobes, 5-min arachidonic acid (AA) infusions (0.085 +/- 0.005 to 2.80 +/- 0.16 mg X min-1 X 100 g lung-1) increased RT, Rv, and Pc (P less than 0.05 at the highest dose), while Ra was not significantly altered and Ra/Rv fell (P less than 0.05 at the highest AA dose). In five CP-perfused lobes, the effect of AA infusion on the pulmonary capillary filtration coefficient (Kf,C) was also determined. Neither low-dose AA (0.167 +/- 0.033 mg X min-1 X 100 g-1) nor high-dose AA (1.35 +/- 0.39 mg X min-1 X 100 g-1) altered Kf,C from control values (0.19 +/- 0.02 ml X min-1 X cmH2O-1 X 100 g-1). The hemodynamic response to AA was attenuated by prior administration of indomethacin (n = 2). We conclude that AA infusion in blood-perfused canine lung lobes increased RT and Pc by increasing Rv and that microvascular permeability is unaltered by AA infusion.  相似文献   

10.
Changes in pulmonary hemodynamics have been shown to alter the mechanical properties of the lungs, but the exact mechanisms are not clear. We therefore investigated the effects of alterations in pulmonary vascular pressure and flow (Q(p)) on the mechanical properties of the airways and the parenchyma by varying these parameters independently in three groups of isolated perfused normal rat lungs. The pulmonary capillary pressure (Pc(est)), estimated from the pulmonary arterial (Ppa) and left atrial pressure (Pla), was increased at constant Q(p) (n = 7), or Q(p) was changed at Pc(est) = 10 mmHg (n = 7) and at Pc(est) = 20 mmHg (n = 6). In each condition, the airway resistance (Raw) and parenchymal damping (G) and elastance (H) were identified from the low-frequency pulmonary input impedance spectra. The results of measurements made under isogravimetric conditions were analyzed. The changes observed in the mechanical parameters were consistent with an altered Pla: monotonous increases in Raw were observed with increasing Pla, whereas G and H were minimal at Pla of approximately 7-10 mmHg and increased at lower and higher Pla. The results indicate that Pla, and not Ppa or Q(p), is the primary determinant of the mechanical condition of the lungs after acute changes in pulmonary hemodynamics: the parenchymal mechanics are impaired if Pla is lower or higher than physiological, whereas airway narrowing occurs at high Pla.  相似文献   

11.
Leukotrienes (LTs) C4 and D4 are vasoconstrictors and are thought to increase both systemic and pulmonary vascular permeability. However, we and others have observed that LTC4 and LTD4 cause pulmonary vasoconstriction but do not increase the fluid filtration coefficient of excised guinea pig lungs perfused with a cell-depleted perfusate. To determine what vascular segments were exposed to an LT-induced increase in intravascular hydrostatic pressure we measured pulmonary arterial (Ppa), pulmonary arterial occlusion (Po,a), venous (Po,v) and double occlusion (Pdo) pressures in isolated guinea pig lungs perfused with a cell-depleted buffered salt solution before and after injecting 4 micrograms of LTB4, LTC4, or LTD4 into the pulmonary artery. All three LTs increased airway pressures and also increased Ppa, Po,a, and Pdo. Histamine (15 micrograms) as well as serotonin (20 or 200 micrograms) had the same effect. In excised rabbit lungs, histamine and serotonin increased only Ppa, and Po,a. LTC4 had no vasoactivity. There are marked species variations with regard to the activity and site of action of histamine, serotonin, and LTC4 on the pulmonary circulation.  相似文献   

12.
Because both chemical and mechanical insults to the lung may occur concomitantly with trauma, we hypothesized that the pressure threshold for vascular pressure-induced (mechanical) injury would be decreased after a chemical insult to the lung. Normal isolated canine lung lobes (N, n = 14) and those injured with either airway acid instillation (AAI, n = 18) or intravascular oleic acid (OA, n = 25) were exposed to short (5-min) periods of elevated venous pressure (HiPv) ranging from 19 to 130 cmH2O. Before the HiPv stress, the capillary filtration coefficient (Kf,c) was 0.12 +/- 0.01, 0.27 +/- 0.03, and 0.31 +/- 0.02 ml.min-1.cmH2O-1 x 100 g-1 and the isogravimetric capillary pressure (Pc,i) was 9.2 +/- 0.3, 6.8 +/- 0.5, and 6.5 +/- 0.3 cmH2O in N, AAI, and OA lungs, respectively. However, the pattern of response to HiPv was similar in all groups: Kf,c was no different from the pre-HiPv value when the peak venous pressure (Pv) remained less than 55 cmH2O, but it increased reversibly when peak Pv exceeded 55 cmH2O (P less than 0.05). The reflection coefficient (sigma) for total proteins measured after pressure exposure averaged 0.60 +/- 0.03, 0.32 +/- 0.04, and 0.37 +/- 0.09 for N, AAI, and OA lobes respectively. However, in contrast to the result expected if pore stretching had occurred at high pressure, in all groups the sigma measured during the HiPv stress when Pv exceeded 55 cmH2O was significantly larger than that measured during the recovery period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The capillary filtration coefficient (Kf,c) is a sensitive and specific index of vascular permeability if surface area remains constant, but derecruitment might affect Kf,c in severely damaged lungs with high vascular resistance. We studied the effect of high and low blood flow rates on Kf,c in papaverine-pretreated blood-perfused isolated dog lungs perfused under zone 3 conditions with and without paraquat (PQ, 10(-2) M). Three Kf,cs were measured successively at hourly intervals for 5 h. These progressed sequentially from isogravimetric blood flow with low vascular pressure (I/L) to high flow with low vascular pressure (H/L) to high flow with high vascular pressure (H/H). The blood flows of H/L and H/H were greater than or equal to 1.5 times that of I/L. There were no significant changes in Kf,c in lungs without paraquat over a 50-fold range of blood flow rates. At 3 h after PQ, I/L-Kf,c was significantly increased and both isogravimetric capillary pressure and total protein reflection coefficient were decreased from base line. At 4 and 5 h, H/L-Kf,c was significantly greater than the corresponding I/L-Kf,c (1.01 +/- 0.22 vs. 0.69 +/- 0.09 and 1.26 +/- 0.19 vs. 0.79 +/- 0.10 ml.min-1.cmH2O-1.100 g-1, respectively) and isogravimetric blood flow decreased to 32.0 and 12.0% of base line, respectively. Pulmonary vascular resistance increased to 12 times base line at 5 h after PQ. We conclude that Kf,c is independent of blood flow in uninjured lungs. However, Kf,c measured at isogravimetric blood flow underestimated the degree of increase in Kf,c in severely damaged and edematous lungs because of a high vascular resistance and derecruitment of filtering surface area.  相似文献   

14.
Hemodynamics and vascular permeability were studied during acute alveolar hypoxia in isolated canine lung lobes perfused at constant flow with autogenous blood. Hypoxia was induced in the presence (COI + Hypox, n = 6) or absence (Hypox, n = 6) of cyclooxygenase inhibition (COI) with indomethacin or meclofenamate. Hypoxic ventilation reduced blood PO2 from 143 to 25-29 Torr without a change in PCO2. During hypoxia a capillary filtration coefficient (Kf) was obtained gravimetrically as an index of vascular permeability to water. In COI + Hypox, pulmonary arterial pressure (Pa) increased from 11.5 +/- 0.7, post-COI normoxia, to a peak of 22.1 +/- 2.3 during hypoxia (P less than 0.01) without a change in capillary pressure (Pc). In contrast, hypoxia changed neither Pa nor Pc in Hypox relative to an untreated normoxic control group (Normox, n = 6, P greater than 0.05). Kfs (means +/- SE in ml.min-1.Torr-1.100 g-1) for Normox (0.070 +/- 0.014), Hypox (0.082 +/- 0.024), and COI + Hypox (0.057 +/- 0.017) did not differ from one another (P greater than 0.05). Although COI markedly enhanced the pressor response to acute alveolar hypoxia, hypoxia increased neither Pc nor vascular permeability regardless of COI.  相似文献   

15.
In rabbit livers, it is not well known which segments of the hepatic vasculature are predominantly contracted by various vasoconstrictors. We determined effects of histamine, norepinephrine, and KCl on hepatic vascular resistance distribution in isolated rabbit livers perfused via the portal vein with 5% albumin-Krebs solution at a constant flow rate. Hepatic capillary pressure was measured by double vascular occlusion pressure (Pdo) and was used to determine portal (Rpv) and hepatic venous (Rhv) resistances. A bolus injection of either histamine or norepinephrine dose-dependently increased portal venous pressure but not Pdo, resulting in a dose-dependent increase in Rpv and no changes in Rhv. KCl (50 mM), when injected in anterogradely perfused livers, contracted the presinusoidal vessels selectively with liver weight loss. Although KCl significantly increased Rhv in retrogradely perfused livers, the increase in Rpv by 400% of baseline predominated over the increase in Rhv by 85% of baseline. In the retrogradely perfused livers, KCl produced an initial liver weight loss followed by a profound weight gain. We conclude that histamine and norepinephrine selectively contract the presinusoidal vessels. The results on KCl effects suggest that this selective presinusoidal constriction might be possibly due to predominant distribution of functionally active vascular smooth muscle in the presinusoidal vessels rather than the hepatic vein in rabbit livers.  相似文献   

16.
We have developed a model including three serial compliant compartments (arterial, capillary, and venous) separated by two resistances (arterial and venous) for interpreting in vivo single pulmonary arterial or venous occlusion pressure profiles and double occlusion. We formalized and solved the corresponding system of equations. We showed that in this model 1) pulmonary capillary pressure (Pc) profile after arterial or venous occlusion has an S shape, 2) the estimation of Pc by zero time extrapolation of the slow component of the arterial occlusion profile (Pcao) always overestimates Pc, 3) symmetrically such an estimation on the venous occlusion profile (Pcvo) always underestimates Pc, 4) double occlusion pressure (Pcdo) differs from Pc. We evaluated the impact of varying parameter values in the model with parameter sets drawn either from the literature or from arbitrary arterial and venous pressures, being respectively 20 and 5 mmHg. Resulting Pcao-Pc differences ranged from 0.4 to 5.4 mmHg and resulting Pcvo-Pc differences ranged from -0.3 to -5.0 mmHg. Pcdo-Pc was positive or negative, its absolute value in general being negligible (< 1.1 mmHg).  相似文献   

17.
The venous occlusion technique was used to measure capillary pressure in the forearm and foot of man over a wide range of venous pressures. In six recumbent subjects venous pressure (Pv) in the forearm (mean +/- SE) was 9.3 +/- 1.4 mmHg and the venous occlusion estimate of capillary pressure (Pc) was 17.0 +/- 1.6 mmHg, whereas in another six subjects Pv in the foot was 17.1 +/- 1.2 mmHg and Pc was 23.4 +/- 2.5 mmHg. Venous pressure in the limbs was increased either by changes in posture or by venous congestion with a sphygmomanometer cuff. On standing Pv in the foot increased to 95.2 +/- 1.5 mmHg and Pc rose to 112.8 +/- 3.1 mmHg. The relationship established between venous pressure and capillary pressure in the forearm is Pc = 1.16 Pv + 8.1, whereas in the foot the relationship is Pc = 1.2 Pv + 1.6. The magnitude and duration of the changes in capillary pressure were also recorded during reactive hyperemia. The venous occlusion method of measuring capillary pressure is simple and easily applied to studies in humans.  相似文献   

18.
冠状动脉狭窄对血流量的影响   总被引:21,自引:1,他引:20  
在22条开胸犬上观察了冠脉狭窄对血流量(CBF)的影响。用一可调节的微米缩窄器定量调节左旋支缩窄程度,测量了主动脉平均压(Pa)、冠脉远端小动脉平均压(Pc)和狭窄端压力降(ΔP)。冠脉狭窄程度与血流量变化曲线显示:在冠脉狭窄程度小于85%时,CBF相对稳定;随着狭窄程度的进一步增加,CBF急剧下降;而在狭窄程度大于95%后,CBF又缓慢下降。冠状动脉狭窄程度与CBF下降的曲线可用下列方程式表达: CBF=1.48×10~(10)e~(-27.6A)(A=冠脉狭窄程度) 冠脉狭窄程度大于50%时,狭窄程度与Pc呈负相关:Pc=159.1—1.36A(r=-0.73,P<0.01)。Pc与CBF呈正相关;Pc=16.9 1.3CBF(r=0.74,P<0.01)  相似文献   

19.
The effects of peroxynitrite (ONOO-) on vascular responses were investigated in the systemic and hindquarters vascular bed and in the isolated perfused rat lung. Intravenous injections of ONOO- decreased systemic arterial pressure, and injections of ONOO- into the hindquarters decreased perfusion pressure in a dose-related manner. Injections of ONOO- into the lung perfusion circuit increased pulmonary arterial perfusion pressure. Responses to ONOO- were rapid in onset, short in duration, and repeatable without exhibiting tachyphylaxis. Repeated injections of ONOO- did not alter systemic, hindquarters, or pulmonary responses to endothelium-dependent vasodilators or other vasoactive agonists and did not alter the hypoxic pulmonary vasoconstrictor response. Injections of sodium nitrate or nitrite or decomposed ONOO- had little effect on vascular pressures. Pulmonary and hindquarters responses to ONOO- were not altered by a cyclooxygenase inhibitor in a dose that attenuated responses to arachidonic acid. These results demonstrate that ONOO- has significant pulmonary vasoconstrictor, systemic vasodepressor, and vasodilator activity; that short-term repeated exposure does impair vascular responsiveness; and that responses to ONOO- are not dependent on cyclooxygenase product release.  相似文献   

20.
The effects of embolization on the longitudinal distribution of pulmonary vascular pressures with respect to vascular compliance were determined by the vascular inflow and outflow occlusion technique in isolated blood-perfused pig lungs treated with papaverine to prevent vasomotor responses. Embolization with microspheres having mean diameters of 75, 200, and 550 microns and with barrier beads (2 X 3 X 3.5 mm) significantly increased the pressure gradient across the relatively compliant middle region (delta Pm) without increasing the gradients across the relatively noncompliant regions on the arterial (delta Pa) or venous (delta Pv) ends of the vasculature. In contrast ligation of several lobar arteries caused delta Pa to increase from 0.9 +/- 0.3 to 5.9 +/- 1.1 mmHg but did not change delta Pm or delta Pv. Assuming that delta Pa and delta Pv measured by vascular occlusion result from cessation of flow through resistances, these data suggest that in isolated pig lungs the vessels at the boundary between the arterial and middle regions defined by the occlusion technique are arteries greater than 2-3 mm diam and smaller than lobar arteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号