首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructan is an important class of non-structural carbohydrates present in cool-season grasses. Sucrose: fructan 6-fructosyltransferase (6-SFT, EC 2.4.1.10), one of the enzymes thought to be involved in grass fructan biosynthesis, catalyzes the initiation and extension of 2,6-linked fructans.Myo-inositol is a central component in several metabolic pathways in higher plants.Myo-inositol 1-phosphate synthase (MIPS) (EC 5.5.1.4), the first enzyme in inositolde novo biosynthesis, catalyzes the formation ofmyo-inositol 1-phosphate (MIP) from glucose-6-phosphate. The expression of 6-SFT and MIPS genes is compared in barley (Hordeum vulgare L.) leaves under various conditions. In cool temperature treatments, both 6-SFT and MIPS mRNAs accumulate within two days and then decline after four days. Under warm temperatures and continuous illumination, the amount of 6-SFT and MIPS mRNA gradually accumulated in detached leaves and increased significantly by 8 h. In contrast, we observed no significant changes over time in attached (control) leaves. Treating detached leaves with glucose or sucrose in the dark resulted in accumulations of both 6-SFT and MIPS mRNA. Homologous expression patterns for 6-SFT and MIPS genes suggest that they may be similarly regulated in barley leaves. Although sucrose and glucose may play important roles in the expression of 6-SFT and MIPS genes, regulation likely involves multiple factors.  相似文献   

2.
3.

Key message

Co-suppressed MIPS2 transgenic lines allow bypass of the embryo lethal phenotype of the previously published triple knock-out and demonstrate the effects of MIPS on later stages of development.

Abstract

Regulation of inositol production is of interest broadly for its effects on plant growth and development. The enzyme l-myo-inositol 1-phosphate synthase (MIPS, also known as IPS) isomerizes d-glucose-6-P to d-inositol 3-P, and this is the rate-limiting step in inositol production. In Arabidopsis thaliana, the MIPS enzyme is encoded by three different genes, (AtMIPS1, AtMIPS2 and AtMIPS3), each of which has been shown to produce proteins with biochemically similar properties but differential expression patterns. Here, we report phenotypic and biochemical effects of MIPS co-suppression. We show that some plants engineered to overexpress MIPS2 in fact show reduced expression of AtMIPS1, AtMIPS2 and AtMIPS3, and show altered vegetative phenotype, reduced size and root length, and delayed flowering. Additionally, these plants show reduced inositol, increased glucose levels, and alteration of other metabolites. Our results suggest that the three AtMIPS genes work together to impact the overall synthesis of myo-inositol and overall inositol homeostasis.
  相似文献   

4.
l-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of d-glucose 6-phosphate to l-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989–998, 2004). One of the forms with a ~50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as a ~65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified ~1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive ~65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.Anirban Chatterjee and Krishnarup Ghosh Dastidar contributed equally.  相似文献   

5.
6.
Mutations in the d-myo-inositol 3-phosphate synthase 1 gene (MIPS1) in soybean [Glycine max (L.) Merr.] cause modifications to seed phosphorus and carbohydrate content that improve the nutritional value of food and feed. Molecular markers are an efficient tool for breeding MIPS1 mutant germplasm due to reduced seed germination and field emergence potential. An F2 population segregating for the MIPS1 mutation found in experimental soybean line V99-5089 was used to develop breeder-friendly markers. Markers were validated in 88 advanced lines from 9 diverse pedigrees. Ten potential simple sequence repeat (SSR) markers, located on Gm11, from the new BARCSOYSSR_1.0 database were tested and four were polymorphic. BARCSOY_11_1495 was 93–97% effective for selecting the mutation. A KBiosciences Competitive Allele Specific PCR (KASPar) assay was developed to select directly for the V99-5089-derived MIPS1 single nucleotide polymorphism (SNP) mutation. The KASPar assay is simple and cost-effective compared to other SNP genotyping assays. The MIPS1 mutation in V99-5089 is likely to have occurred spontaneously. We describe a method of DNA extraction in soybean using a Geno/Grinder for fast and easy tissue maceration.  相似文献   

7.
Chatterjee A  Majee M  Ghosh S  Majumder AL 《Planta》2004,218(6):989-998
l-myo-Inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes conversion of glucose 6-phosphate to l-myo-inositol 1-phosphate, the first and the rate-limiting step in the production of inositol, and has been reported from evolutionarily diverse organisms. Two forms of the enzyme have been characterized from higher plants, viz. cytosolic and chloroplastic, and the presence of MIPS has been earlier reported from the cyanobacteria (e.g. Spirulina sp.), the presumed chloroplast progenitors. The present study demonstrates possible multiple forms of MIPS and identifies the gene for one of them in the cyanobacterium Synechocystis sp. PCC 6803. Following detection of at least two immunologically cross-reactive MIPS forms, we have been able to identify from the fully sequenced Synechocystis genome an as yet unassigned open reading frame (ORF), sll1722, coding for the approx. 50-kDa MIPS protein, by using biochemical, molecular and bioinformatics tools. The DNA fragment corresponding to sll1722 was PCR-amplified and functional identity of the gene was confirmed by a complementation assay in Saccharomyces cerevisiae mutants containing a disrupted INO1 gene for the yeast MIPS. The sll1722 PCR product was cloned in Escherichia coli expression vector pET20b and the isopropyl -d-thiogalactopyranoside (IPTG)-induced overexpressed protein product was characterized following complete purification. Comparison of the sll1722 sequences with other MIPS sequences and its phylogenetic analysis revealed that the Synechocystis MIPS gene is quite divergent from the others.Abbreviations CBB Coomassie Brilliant Blue - EST Expressed sequence tag - G6P d-Glucose 6-phosphate - IPTG Isopropyl -d-thiogalactopyranoside - MIPS lmyo-Inositol 1-phosphate synthase - ORF Open reading frame  相似文献   

8.
9.
To quantify the importance of the Calvin cycle enzyme phosphoribulokinase (PRK) in photosynthesis and to perturb photosynthesis without large direct reductions in leaf protein content, tobacco plants (Nicotiana tabacum L.) were transformed with an inverted cDNA encoding tobacco PRK. A population of plants expressing antisense RNA and a range of PRK activities from wild-type to less than 5% of wild-type were obtained. CO2 assimilation under the growing conditions (330 µmol photons m?2 sec?1, 350 µbar CO2, 25°C) was not inhibited until more than 85% of PRK activity had been removed. With reduction in PRK activity of between 85 and 95%, assimilation rates and amounts of chlorophyll compared with wild-type were reduced by up to half. Decreased absorption of light by leaves with less chlorophyll accounte0d for only a small part of the reduction in assimilation rate. When PRK activity was below 15% of wild-type, amounts of ribulose-5-phosphate, ribose-5-phosphate, ATP and fructose-6-phosphate were 1.5- to fivefold higher and levels of ribulose-1,5-bisphosphate, 3-phosphoglyceric acid and ADP 1.5- to fourfold lower than in wild-type. It is estimated that these changes maintained flux through PRK to realise the assimilation rates observed. A possible shift of control within the Calvin cycle towards fructose-1,6-bisphosphatase in plants with low PRK is discussed. Amounts of hexoses and starch in particular were reduced in plants expressing the lowest PRK activities; amounts of sucrose were little affected. Lower CO2 assimilation in plants with low PRK activity correlated with reduced relative growth rate of shoots and delayed flowering, but there was no effect on specific leaf area. It is concluded that (i) in wild-type plants grown in constant low light, PRK has a flux-control coefficient for CO2 assimilation of zero, and that even when amounts of PRK are reduced 20-fold relative to wild-type, altered amounts of metabolites compensate for much of the reduction in PRK protein; (ii) in plants where there is a 95% reduction in amounts of PRK, photosynthesis was reduced twofold without large changes in leaf protein content or leaf geometry.  相似文献   

10.
Myo-Inositol is an important metabolite for normal growth and development of all living organisms. The cellular level of myo-inositol is controlled by the enzyme L-myo- inositol-1-phosphate synthase (MIPS) [EC 5.5.1.4]. Appreciable level of MIPS activity was detected from the common pteridophytes like Dicranopteris, Diplazium, Diplopterygium, Equisetum, Lycopodium, Polypodium, Pteridium, Selaginella etc. available in Darjeeling Himalayas. The enzyme was partially purified from the reproductive pinnules of Diplopterygium glaucum (Thunb.) Nakai. The purification obtained was about 81 fold and the recovery was about 13.5 %. The final enzyme preparation specifically utilized D-Glucose-6-phosphate and NAD+ as its substrate and co-factor respectively. It shows pH optima between 7.0 and 7.5 while the temperature maximum was at 35 °C. The enzyme activity was slightly inhibited by Na+ and Cd2+ and highly inhibited by Li+ and Hg2+. The K rn values for D-glucose-6-phosphate and NAD+ was found to be as 0.83 mM and 0.44 mM respectively while the V max values were 1.42 mM and 1.8 mM for D-glucose-6-phosphate and NAD+ respectively. The present study indicates the universal occurrence of this enzyme in all plant groups.  相似文献   

11.
12.
Phytic acid, myo-inositol 1,2,3,4,5,6-hexakisphosphate, is the major storage compound of phosphorous (P) in plants, predominantly accumulating in seeds (up to 4–5% of dry weight) and pollen. In cereals, phytic acid is deposited in embryo and aleurone grain tissues as a mixed "phytate" salt of potassium and magnesium, although phytates contain other mineral cations such as iron and zinc. During germination, phytates are broken down by the action of phytases, releasing their P, minerals and myo-inositol which become available to the growing seedling. Phytic acid represents an anti-nutritional factor for animals, and isolation of maize low phytic acid (lpa) mutants provides a novel approach to study its biochemical pathway and to tackle the nutritional problems associated with it. Following chemical mutagenesis of pollen, we have isolated a viable recessive mutant named lpa 241 showing about 90% reduction of phytic acid and about a tenfold increase in seed-free phosphate content. Although germination rate was decreased by about 30% compared to wild-type, developement of mutant plants was apparentely unaffected. The results of the genetic, biochemical and molecular characterization experiments carried out by SSR mapping, MDD-HPLC and RT-PCR are consistent with a mutation affecting the MIPS1S gene, coding for the first enzyme of the phytic acid biosynthetic pathway.Communicated by F. Salamini  相似文献   

13.
Salinity and drought tolerance of mannitol-accumulating transgenic tobacco   总被引:8,自引:1,他引:7  
Tobacco plants (Nicotiana tabacum L.) were transformed with a mannitol-1-phosphate dehydrogenase gene resulting in mannitol accumulation. Experiments were conducted to determine whether mannitol provides salt and/or drought stress protection through osmotic adjustment. Non-stressed transgenic plants were 20–25% smaller than non-stressed, non-transformed (wild-type) plants in both salinity and drought experiments. However, salt stress reduced dry weight in wild-type plants by 44%, but did not reduce the dry weight of transgenic plants. Transgenic plants adjusted osmotically by 0.57 MPa, whereas wild-type plants did not adjust osmotically in response to salt stress. Calculations of solute contribution to osmotic adjustment showed that mannitol contributed only 0-003-0-004 MPa to the 0.2 MPa difference in full turgor osmotic potential (πo) between salt-stressed transgenic and wild-type plants. Assuming a cytoplasmic location for mannitol and that the cytoplasm constituted 5% of the total water volume, mannitol accounted for only 30–40% of the change in πo of the cytoplasm. Inositol, a naturally occurring polyol in tobacco, accumulated in response to salt stress in both transgenic and wild-type plants, and was 3-fold more abundant than mannitol in transgenic plants. Drought stress reduced the leaf relative water content, leaf expansion, and dry weight of transgenic and wild-type plants. However, πo was not significantly reduced by drought stress in transgenic or wild-type plants, despite an increase in non-structural carbohydrates and mannitol in droughted plants. We conclude that (1) mannitol was a relatively minor osmolyte in transgenic tobacco, but may have indirectly enhanced osmotic adjustment and salt tolerance; (2) inositol cannot substitute for mannitol in this role; (3) slower growth of the transgenic plants, and not the presence of mannitol per se, may have been the cause of greater salt tolerance, and (4) mannitol accumulation was enhanced by drought stress but did not affect πo or drought tolerance.  相似文献   

14.
The genome sequence of the cyanobacterium Synechocystis sp. PCC6803 revealed four Open reading frame (ORF) encoding putative inositol monophosphatase or inositol monophosphatase-like proteins. One of the ORFs, sll1383, is ∼870 base pair long and has been assigned as a probable myo-inositol 1 (or 4) monophosphatase (IMPase; EC 3.1.3.25). IMPase is the second enzyme in the inositol biosynthesis pathway and catalyses the conversion of L-myo-inositol 1-phosphate to free myo-inositol. The present work describes the functional assignment of ORF sll1383 as myo-inositol 1-phosphate phosphatase (IMPase) through molecular cloning, bacterial overexpression, purification and biochemical characterization of the gene product. Affinity (K m) of the recombinant protein for the substrate DL-myo-inositol 1-phosphate was found to be much higher (0.0034 ± 0.0003 mM) compared to IMPase(s) from other sources but in comparison V max (∼0.033 μmol Pi/min/mg protein) was low. Li+ was found to be an inhibitor (IC50 6.0 mM) of this enzyme, other monovalent metal ions (e.g. Na+, K+ NH4+) having no significant effect on the enzyme activity. Like other IMPase(s), the activity of this enzyme was found to be totally Mg2+ dependent, which can be substituted partially by Mn2+. However, unlike other IMPase(s), the enzyme is optimally active at ∼42°C. To the best of our knowledge, sll1383 encoded IMPase has the highest substrate affinity and specificity amongst the known examples from other prokaryotic sources. A possible application of this recombinant protein in the enzymatic coupled assay of L-myo-inositol 1-phosphate synthase (MIPS) is discussed.  相似文献   

15.
Luo Y  Qin G  Zhang J  Liang Y  Song Y  Zhao M  Tsuge T  Aoyama T  Liu J  Gu H  Qu LJ 《The Plant cell》2011,23(4):1352-1372
In animal cells, myo-inositol is an important regulatory molecule in several physiological and biochemical processes, including signal transduction and membrane biogenesis. However, the fundamental biological functions of myo-inositol are still far from clear in plants. Here, we report the genetic characterization of three Arabidopsis thaliana genes encoding d-myo-inositol-3-phosphate synthase (MIPS), which catalyzes the rate-limiting step in de novo synthesis of myo-inositol. Each of the three MIPS genes rescued the yeast ino1 mutant, which is defective in yeast MIPS gene INO1, and they had different dynamic expression patterns during Arabidopsis embryo development. Although single mips mutants showed no obvious phenotypes, the mips1 mips2 double mutant and the mips1 mips2 mips3 triple mutant were embryo lethal, whereas the mips1 mips3 and mips1 mips2+/− double mutants had abnormal embryos. The mips phenotypes resembled those of auxin mutants. Indeed, the double and triple mips mutants displayed abnormal expression patterns of DR5:green fluorescent protein, an auxin-responsive fusion protein, and they had altered PIN1 subcellular localization. Also, membrane trafficking was affected in mips1 mips3. Interestingly, overexpression of PHOSPHATIDYLINOSITOL SYNTHASE2, which converts myo-inositol to membrane phosphatidylinositol (PtdIns), largely rescued the cotyledon and endomembrane defects in mips1 mips3. We conclude that myo-inositol serves as the main substrate for synthesizing PtdIns and phosphatidylinositides, which are essential for endomembrane structure and trafficking and thus for auxin-regulated embryogenesis.  相似文献   

16.
L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS), an evolutionarily conserved enzyme-protein, catalyses the first and rate limiting step of inositol biosynthesis. Inositol and its derivatives play important roles in biological kingdom like growth regulation, membrane biogenesis, signal transduction and also acts as an osmolyte or osmoprotectant in abiotic stress tolerance. Here we report the cloning, sequencing and the characterization of the INO1 gene from Xerophyta viscosa (XINO1), a monocotyledonous resurrection plant. Nucleotide sequences of XINO1 show striking homology (70–99%) with a number of INO1 genes from plant sources particularly with the monocots. The gene is functionally identified through genetic complementation using a yeast inositol auxotrophic strain FY250. The gene is expressed in E. coli BL21, recombinant protein purified to homogeneity, biochemically characterized and compared with Oryza INO1 (RINO1) gene product. The XINO1 gene product is catalytically active in a broader range of lower temperature (between 10–40 °C) than the RINO1 gene- product. This is the first report of MIPS gene from any resurrection plant.  相似文献   

17.
Myo-inositol participates in many different aspects of plant physiology and myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate limiting step of inositol biosynthetic pathway. Chickpea (Cicer arietinum), a drought-tolerant leguminous crop plant, is known to accumulate increased inositol during dehydration stress. Previously, we reported two differentially expressed divergent genes (CaMIPS1 and CaMIPS2) encoding two MIPS isoforms in chickpea. In this communication, we demonstrated that CaMIPS2 is an early dehydration-responsive gene and is also rapidly induced by exogenous ABA application, while CaMIPS1 expression is not much influenced by dehydration or ABA. The regulation of expression of these two genes has been studied by examining their promoter activity through GUS reporter gene and differential promoter activity has been observed. Moreover, unlike CaMIPS1 promoter, CaMIPS2 promoter contains CRT/DRE cis-regulatory element which seems to play a key role in dehydration-induced expression of CaMIPS2. Furthermore, CaMIPS1 and CaMIPS2 have been successfully complemented and shown to repair the defect of seedling growth and altered seed phenotype of Atmips1 mutant. Moreover, Arabidopsis transgenic plants overexpressing CaMIPS1 or CaMIPS2 exhibit improved tolerance to salinity and dehydration stresses and such tolerance of transgenic plants is correlated with their elevated level of inositol. Remarkably, CaMIPS2 transgenic lines perform better in all attributes than CaMIPS1 transformants under such stress conditions, due to comparatively unabated production of inositol by CaMIPS2 enzyme, as this enzyme retains significant activity under stress conditions.  相似文献   

18.
Myo-inositol-1-phosphate synthase (MIPS) catalyzes the conversion of glucose-6-phosphate to myo-inositol-1-phosphate. The reaction catalyzed by MIPS is the first step in the biosynthesis of inositol and inositol-containing molecules that serve important roles in both eukaryotes and prokaryotes. Consequently, MIPS is a target for the development of therapeutic agents for the treatment of infectious diseases and bipolar disorder. We recently reported a continuous spectrophotometric method for measuring MIPS activity using a coupled assay that allows the rapid characterization of MIPS in a multiwell plate format. Here we validate the continuous assay as a high-throughput alternative for measuring MIPS activity and report on one limitation of this assay—the inability to examine the effect of divalent metal ions (at high concentrations) on MIPS activity. In addition, we demonstrate that the activity of MIPS from Arabidopsis thaliana is moderately enhanced by the addition Mg2+ and is not enhanced by other divalent metal ions (Zn2+ and Mn2+), consistent with what has been observed for other eukaryotic MIPS enzymes. Our findings suggest that the continuous assay is better suited for characterizing eukaryotic MIPS enzymes that require monovalent cations as cofactors than for characterizing bacterial or archeal MIPS enzymes that require divalent metal ions as cofactors.  相似文献   

19.
Summary The biosynthesis of phytic acid is known to be catalyzed by enzymes causing a stepwise phosphorylation of myo-inositol or 1l-myo-inositol 1-phosphate with adenosine triphosphate as phosphate donor. The kinases responsible for these phosphorylations in Lemna gibba were purified by affinity chromatography on a Sepharose gel carrying myo-inositol 2-phosphate at the binding site. Three fractions with enzymatic activity could be identified; in the first one, we find myo-inositol kinase (EC 2.7.1.64) phosphorylating myo-inositol to 1l-myo-inositol 1-phosphate; the second one brings about the phosphorylation of myo-inositol trisphosphate to phytic acid; the third one phosphorylates myo-inositol 1-phosphate to a myo-inositol trisphosphate. An enzyme oxidizing 1l-myo-inositol 1-phosphate to an uronic acid derivative is found in the first two fractions. In the presence of ATP, Mg2+ Mn2+, and the second and the third enzyme fractions in an appropriate mixture, 1l-myo-inositol 1-phosphate can be phosphorylated to phytic acid. The structure of the trisphosphate acting as an intermediate is not yet known.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号