共查询到20条相似文献,搜索用时 62 毫秒
1.
神经细胞粘附分子与硫酸化氨基聚糖在神经发育、轴突生长、突触可塑性及学习和记忆中的作用 总被引:3,自引:0,他引:3
神经细胞粘附分子(neural cell adhesion molecule,NCAM)是一种主要表达于神经系统的糖蛋白,通过亲同性及亲异性结合介导细胞与细胞与细胞外基质间的相互作用,参与细胞的识别,迁移,轴突生长,细胞信号转导,学习和记忆等过程。硫酸化氨基聚糖可调节脑发育中的细胞分化,轴突生长及中枢神经系统中神经元的再生,可能参与了与学习和记忆相关的神经结构功能的调节。这些作用可能与神经细胞粘附分子的亲异性结合有关。 相似文献
2.
3.
突触的可塑性与学习,记忆机制 总被引:11,自引:0,他引:11
位于哺乳动物海马、小脑皮层的不同类型的可塑性突触,分别具有突触传递的长时程强化(LTP)或抑制(LTD)现象,它们可能是某些经典条件反射形成的基础。以LTD型突触为记忆装置的小脑局部神经网络,具有典型的适应控制能力。突触可塑性的另一类表现是突触前纤维长芽,有证据表明,伴随大脑—红核系统条件反射的建立,在红核神经元胞体附近有新的突触形成,这可能是长期记忆的基础。 相似文献
4.
表观遗传修饰在学习和记忆中的调节作用 总被引:1,自引:0,他引:1
学习和记忆行为是大脑的基本功能,它使得生物个体能够更好地适应环境的变化。揭示学习和记忆的分子生物学机制是现代神经生物学发展的目标之一。经过近40年的研究现已初步证实了突触可塑性在学习和记忆中所起的关键作用。而近年来的研究发现,表观遗传修饰对学习和记忆过程具有重要的调控作用。这一发现将有利于进一步揭示学习和记忆的复杂机制,并将为某些认知障碍性疾病的治疗提供新的思路。 相似文献
5.
长时程增强诱导和维持过程中海马CA1区神经细胞粘附分子蛋白水平与mRNA表达的变化 总被引:2,自引:0,他引:2
既往研究发现,神经细胞粘附分子(neural cell adhesion molecules,NCAM)对海马CA1区突触传递长时程增强(longterm potentiation,LTP)的诱导和维持极为关键。本文采用原位杂交法和Western blot法,观察了大鼠海马腑片LTP诱导和维持过程中NCAM mRNA和蛋白水平的动态变化过程。结果显示,强直刺激诱发fEPSP斜率升高10 min时,海马CA1区NCAM mRNA染色阳性神经元数量显著增加(76.6±11.5个),NCAM蛋白水平亦明显升高(7.190±0.64任意单位/50μg蛋白)。强直刺激诱发fEPSP斜率升高1 h时,NCAM mRNA染色阳性神经元数量为73.3±14.0个,NCAM蛋白量为9.031±0.71任意单位/50 μg蛋白;与强直刺激后10 min比较,NCAM mRNA表达无显著变化,而NCAM蛋白水平变化明显。NMDA受体特异阻断剂AP-5在损害LTP的同时,显著抑制NCAM mRNA和蛋白的增加。实验结果表明,在大鼠海马LTP诱导和维持过程中,NCAM mRNA增强的表达相对稳定,而NCAM蛋白水平呈现先低后高的变化。 相似文献
6.
7.
8.
与学习记忆相关的睡眠新功能——突触稳态 总被引:2,自引:0,他引:2
近年来的许多研究证实睡眠有利于学习和记忆.不但学习后的睡眠具有记忆巩固功能,而且学习前的睡眠对于随后的学习也是必需的.长时间觉醒学习后脑内突触连接增多、增强,导致突触空间饱和,阻碍随后继续学习.睡眠的作用是减弱突触连接到基础水平,为随后的学习记忆提供充足的空间和能量. 相似文献
9.
目的探索神经细胞粘附分子(NCAM)促进神经突生长的分子机制。方法对新生小鼠脑组织行免疫共沉淀以筛选NCAM的结合伴侣。向体外培养的海马神经元中加入免疫共沉淀的阳性筛选分子的抑制剂,观察其对NCAM促进神经突生长作用的影响。提取新生小鼠脑内生长锥以及脂筏,检测NCAM、NCAM的结合伴侣及其上、下游分子在小鼠脑内的空间分布。结果免疫共沉淀发现P21活化激酶1(Pak1)为NCAM的结合伴侣,Pak1抑制剂可以阻断NCAM促进神经突生长的作用。对小鼠脑内脂筏的研究发现NCAM和Pak1上游激活物Pak相互作用交换因子(PIX)、细胞分裂周期蛋白42(Cdc42)在生长锥脂筏上富集,提示NCAM与Pak1的结合以及Pak1的活化可能在脂筏上完成。结论 NCAM通过Pak1途径促进神经突生长,且这一作用的实现可能依赖于脂筏。 相似文献
10.
学习和记忆是脑的高级功能。学习指人和动物获得外界知识的神经过程;记忆指将获得的知识储存和读出的神经过程。突触蛋白(synapsin)是一种与突触结构和功能密切相关的膜蛋白,在突触的可塑性以及长时程增强(long-timepotentiation,LTP)中起着重要作用。而突触可塑性是突触对内外环境变化作出反应的能力,是学习记忆的神经生物学基础。LTP一直被认为是学习记忆的神经基础之一,是突触可塑性的功能指标,也是研究学习记忆的理想模型。该文介绍突触蛋白在学习记忆过程中的作用及机制、突触蛋白在学习记忆研究中的应用。 相似文献
11.
Keith B. Hoffman 《Cellular and molecular neurobiology》1998,18(5):461-475
1. It is presently widely assumed that structural reorganization of synaptic architectures subserves the functional gains that define certain neuronal plasticities.2. While target molecules thought to participate in such morphological dynamics are not well defined, growing evidence suggests a pivotal role for cell adhesion molecules.3. Herein, brief discussions are presented on (i) the history of how adhesion molecules became implicated in plasticity and memory processes, (ii) the general biology of some of the major classes of such molecules, and (iii) the future of the adhesion molecule/plasticity relationship. 相似文献
12.
Cell adhesion molecules play a diverse role in neural development, signal transduction, structural linkage to extracellular and intracellular proteins, synaptic stabilization, neurogenesis, and learning. Neural cell adhesion molecules (NCAM) are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. There are three major NCAM isoforms: NCAM 180, NCAM 140, and NCAM 120. Several studies reported that NCAM play a central role in memory formation. We investigated the effects of melatonin on the expression of NCAM in the hippocampus, cortex, and cerebellum of rats. The levels of NCAM isoforms were determined by Western blotting. After administration of melatonin for 7 days, the expression of NCAM 180 increased both in the hippocampus and in the cortex, as compared with the control. In contrast, in rats exposed to constant illumination for 7 days (a procedure that inhibits endogenous production of melatonin), levels of NCAM 180 dropped in the hippocampus and became undetectable in the cortex and cerebellum. Levels of NCAM 140 in the hippocampus of light-exposed rats also decreased. There was no change in the expression of NCAM 120 in any brain region. This is the first report indicating that melatonin exerts a modulatory effect on the expression of NCAM in brain areas related to realization of cognitive functions. Melatonin may be involved in structural remodeling of synaptic connections during memory and learning processes. 相似文献
13.
Developmental Expression of Neural Cell Adhesion Molecules of Oligodendrocytes In Vivo and in Culture 总被引:1,自引:2,他引:1
Abstract: Previously, we have shown that oligodendrocyte adhesion molecules are related to the 120,000–Mr neural cell adhesion molecule (NCAM-120). In this report, we present further evidence that the oligodendrocyte adhesion molecule is NCAM-120. Studies on the expression of NCAM-120 and other molecular forms of NCAM in vivo in rat brain, in vitro in primary mixed cultures, and in cultures enriched for oligodendrocytes are described. Western blot analysis of rat brain using anti-NCAM showed that NCAM-120 first appears at postnatal day 7 and increases in quantity thereafter, coincident with the development of oligodendrocytes in vivo and comparable to the expression of myelin basic protein. Purified oligodendrocytes from 4-week-old rat brains expressed only NCAM-120. Quantitation of various forms of NCAMs in rat brain showed marked age-related differences in the expression of three molecular forms of NCAM. Immunofluorescence analysis showed that oligodendrocytes, at all ages tested, expressed NCAM, but in older oligodendrocytes, the intensity of staining was less. Western blot analysis of oligodendrocyte-enriched cultures showed that from day 1 after isolation (12 days of age) through day 7 after isolation (18 days of age) only NCAM-120 is seen. A possible role for NCAM in myelination and remyelination is discussed. 相似文献
14.
Renato G. S. Chirivi Maria I. Nicoletti Andrea Remuzzi Raffaella Giavazzi 《Cell communication & adhesion》1994,2(3):219-224
Metastasis is a multistep process in which a metastatic tumor cell detaches from the primary tumor, invades the surrounding tissues, passes through supporting structures such as interstitial stroma and extracellular matrix, and enters the lymphatic or blood circulation (Poste and Fidler, 1980). Only a few of the neoplastic cells released into the circulation, that survive hemodynamic pressure and host defense mechanisms, will form metastases. The arrest of tumor cells in the capillary bed of secondary organs through an interaction with vascular or lymphatic endothelium and subendothelial basement membrane is followed by their extravasation into the tissue parenchyma, and then micro-metastasis formation. Therefore cell-cell and cell-substrate adhesions occur at different moments in this process. With the recent identification and characterization of cell surface molecules, it has become of particular interest to clarify their role in tumor progression and metastasis (Albelda, 1993). 相似文献
15.
《Cell communication & adhesion》2013,20(3):219-224
Metastasis is a multistep process in which a metastatic tumor cell detaches from the primary tumor, invades the surrounding tissues, passes through supporting structures such as interstitial stroma and extracellular matrix, and enters the lymphatic or blood circulation (Poste and Fidler, 1980). Only a few of the neoplastic cells released into the circulation, that survive hemodynamic pressure and host defense mechanisms, will form metastases. The arrest of tumor cells in the capillary bed of secondary organs through an interaction with vascular or lymphatic endothelium and subendothelial basement membrane is followed by their extravasation into the tissue parenchyma, and then micro-metastasis formation. Therefore cell-cell and cell-substrate adhesions occur at different moments in this process. With the recent identification and characterization of cell surface molecules, it has become of particular interest to clarify their role in tumor progression and metastasis (Albelda, 1993). 相似文献
16.
The consecutive events that occur in a living body following injury are commonly referred to as inflammation (inflammare: to set on fire). In the first century A.D. observations of clinical patients had allowed Cornelius Celsus to formulate his famous “cardinal signs” of inflammation: calor, rubor, tumor and dolor. These still holds true today. The four characteristics of inflammation are redness and swelling with heat and pain. From these early studies it was obvious that blood vessels played an important role in the development of an inflammatory process, which coincided with plasma leakage and accumulation of leucocytes in extravascular tissue. 相似文献
17.
《Cell communication & adhesion》2013,20(3):261-268
The consecutive events that occur in a living body following injury are commonly referred to as inflammation (inflammare: to set on fire). In the first century A.D. observations of clinical patients had allowed Cornelius Celsus to formulate his famous “cardinal signs” of inflammation: calor, rubor, tumor and dolor. These still holds true today. The four characteristics of inflammation are redness and swelling with heat and pain. From these early studies it was obvious that blood vessels played an important role in the development of an inflammatory process, which coincided with plasma leakage and accumulation of leucocytes in extravascular tissue. 相似文献
18.
《Cell communication & adhesion》2013,20(1):69-82
Adhesion molecules and cytokines are important in chronic inflammatory conditions such as rheumatoid arthritis (RA) by virtue of their role in cell activation and emigration. Using immunohistochemical techniques we studied the expression of adhesion molecules and cytokines in cryopreserved sections of murine knee joint in the course of antigen-induced arthritis, an animal model of human RA. Various adhesion molecules and cytokines are expressed in the arthritic joint tissue. LFA-I, Mac-1, CD44, ICAM-I and P-selectin were strongly expressed in the acute phase and to a lesser degree in the chronic phase of arthritis. VLA-4 and VCAM-I appeared to be moderately expressed on day 1, L-selectin between days 1 and 3. LFA-I, Mac-I, CD44, a4-integrin, ICAM-I and the selectins were found expressed on cells of the synovial infiltrate, LFA-1, Mac-1 and ICAM-I on the synovial lining layer, and VCAM-I and P-selectin on endothelial cells. Expression of E-selectin could be demonstrated throughout the experiment at a low level in cells of the acute cell infiltrate. Cytokines, especially IL-2, IL-4, IL-6, TNF, and IFN-7, were heavily expressed during the acute phase of arthritis in cellular infiltrate. Taken together these data demonstrate that cytokines and their activation of adhesion molecules contribute to cell infiltration and activation during the initial phase of arthritis and to the induction and progression of tissue destruction in arthritic joints. These molecules might be potential targets for novel therapeutic strategies in inflammatory and arthritic disorders. 相似文献
19.
20.
Soluble neural cell adhesion molecule (NCAM) from rat brain neuronal cell culture media consists predominantly of a polypeptide of Mr approximately 115,000. Minor amounts of a polypeptide of Mr approximately 180,000 and two inconsistently appearing components of Mr 160,000 and 145,000 are also observed. The Mr 115,000 component is derived from the neuronal membrane NCAM components NCAM-A of Mr 190,000, NCAM-B of Mr 140,000, or both. Thus, as a part of the catabolism of membrane NCAM-A plus -B, a minor fraction is posttranslationally cleaved and recovered in the media as discernible soluble NCAM polypeptides. The half-life of membrane NCAM-A plus -B is less than 24 h. Astrocyte culture media contains a predominant soluble NCAM component of Mr 120,000 derived from membrane-associated NCAM-C. A close comparison of deglycosylated soluble NCAM from astrocyte and neuronal cultures showed a small but consistent difference in Mr, a result suggesting that different NCAM polypeptides are released from the membrane of neurons and astrocytes. In contrast to the Mr 115,000-120,000 NCAM polypeptides, the Mr 180,000 polypeptide from neuronal culture media does not seem to be derived from membrane-attached NCAM and may therefore represent a secreted NCAM isoform. 相似文献